These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


73 related items for PubMed ID: 20565686

  • 1. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10.
    Kars I, McCalman M, Wagemakers L, VAN Kan JA.
    Mol Plant Pathol; 2005 Nov 01; 6(6):641-52. PubMed ID: 20565686
    [Abstract] [Full Text] [Related]

  • 2. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants.
    Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M.
    Mol Plant Microbe Interact; 2003 Apr 01; 16(4):360-7. PubMed ID: 12744465
    [Abstract] [Full Text] [Related]

  • 3. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context.
    Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M.
    FEMS Microbiol Lett; 2008 Dec 01; 289(2):225-32. PubMed ID: 19054110
    [Abstract] [Full Text] [Related]

  • 4. PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses.
    Lionetti V.
    Front Plant Sci; 2015 Dec 01; 6():331. PubMed ID: 26029230
    [Abstract] [Full Text] [Related]

  • 5. Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea.
    Zhou Y, Song J, Wang Y, Yang L, Wu M, Li G, Zhang J.
    Fungal Genet Biol; 2022 May 01; 160():103693. PubMed ID: 35398257
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Ralstonia solanacearum pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence.
    Tans-Kersten J, Guan Y, Allen C.
    Appl Environ Microbiol; 1998 Dec 01; 64(12):4918-23. PubMed ID: 9835583
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N, Tudzynski P.
    Mol Plant Microbe Interact; 2009 Aug 01; 22(8):987-98. PubMed ID: 19589074
    [Abstract] [Full Text] [Related]

  • 11. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M.
    FEMS Microbiol Lett; 2007 Dec 01; 277(1):1-10. PubMed ID: 17986079
    [Abstract] [Full Text] [Related]

  • 12. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S, L'haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Métraux JP, Lamotte O.
    Plant J; 2011 Nov 01; 68(3):507-19. PubMed ID: 21756272
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Elevated genetic variation within virulence-associated Botrytis cinerea polygalacturonase loci.
    Rowe HC, Kliebenstein DJ.
    Mol Plant Microbe Interact; 2007 Sep 01; 20(9):1126-37. PubMed ID: 17849715
    [Abstract] [Full Text] [Related]

  • 15. Functional analysis of H(2)O(2)-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable.
    Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P.
    Mol Plant Pathol; 2004 Jan 01; 5(1):17-27. PubMed ID: 20565578
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B, Wang W, Zong Y, Qin G, Tian S.
    J Proteome Res; 2012 Aug 03; 11(8):4249-60. PubMed ID: 22746291
    [Abstract] [Full Text] [Related]

  • 18. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.
    Blanco-Ulate B, Morales-Cruz A, Amrine KC, Labavitch JM, Powell AL, Cantu D.
    Front Plant Sci; 2014 Aug 03; 5():435. PubMed ID: 25232357
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Stimulatory Effects of Sublethal Doses of Carbendazim on the Virulence and Sclerotial Production of Botrytis cinerea.
    Cong M, Zhang B, Zhang K, Li G, Zhu F.
    Plant Dis; 2019 Sep 03; 103(9):2385-2391. PubMed ID: 31313639
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.