These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 20570139
1. Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Kumar L, Chandra R, Chung PA, Saddler J. Bioresour Technol; 2010 Oct; 101(20):7827-33. PubMed ID: 20570139 [Abstract] [Full Text] [Related]
2. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Kumar L, Arantes V, Chandra R, Saddler J. Bioresour Technol; 2012 Jan; 103(1):201-8. PubMed ID: 22047660 [Abstract] [Full Text] [Related]
3. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Kumar L, Chandra R, Saddler J. Biotechnol Bioeng; 2011 Oct; 108(10):2300-11. PubMed ID: 21520024 [Abstract] [Full Text] [Related]
4. Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars? Kumar L, Tooyserkani Z, Sokhansanj S, Saddler JN. Bioresour Technol; 2012 Oct; 121():190-8. PubMed ID: 22858485 [Abstract] [Full Text] [Related]
5. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Tengborg C, Galbe M, Zacchi G. Biotechnol Prog; 2001 Oct; 17(1):110-7. PubMed ID: 11170488 [Abstract] [Full Text] [Related]
6. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Nakagame S, Chandra RP, Kadla JF, Saddler JN. Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740 [Abstract] [Full Text] [Related]
7. Relatively high-substrate consistency hydrolysis of steam-pretreated sweet sorghum bagasse at relatively low cellulase loading. Shen F, Zhong Y, Saddler JN, Liu R. Appl Biochem Biotechnol; 2011 Oct; 165(3-4):1024-36. PubMed ID: 21728025 [Abstract] [Full Text] [Related]
8. Optimization of chip size and moisture content to obtain high, combined sugar recovery after sulfur dioxide-catalyzed steam pretreatment of softwood and enzymatic hydrolysis of the cellulosic component. Olsen C, Arantes V, Saddler J. Bioresour Technol; 2015 Oct; 187():288-298. PubMed ID: 25863206 [Abstract] [Full Text] [Related]
9. Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Wiman M, Dienes D, Hansen MA, van der Meulen T, Zacchi G, Lidén G. Bioresour Technol; 2012 Dec; 126():208-15. PubMed ID: 23073110 [Abstract] [Full Text] [Related]
10. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Zhu W, Zhu JY, Gleisner R, Pan XJ. Bioresour Technol; 2010 Apr; 101(8):2782-92. PubMed ID: 20006490 [Abstract] [Full Text] [Related]
11. Steam pretreatment of Douglas-fir wood chips. Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis? Boussaid AL, Esteghlalian AR, Gregg DJ, Lee KH, Saddler JN. Appl Biochem Biotechnol; 2000 Apr; 84-86():693-705. PubMed ID: 10849828 [Abstract] [Full Text] [Related]
12. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Yang B, Wyman CE. Biotechnol Bioeng; 2006 Jul 05; 94(4):611-7. PubMed ID: 16673419 [Abstract] [Full Text] [Related]
13. Enzymatic hydrolysis of steam-exploded hardwood using short processing times. Horn SJ, Eijsink VG. Biosci Biotechnol Biochem; 2010 Jul 05; 74(6):1157-63. PubMed ID: 20530898 [Abstract] [Full Text] [Related]
15. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Zhu JY, Pan XJ, Wang GS, Gleisner R. Bioresour Technol; 2009 Apr 05; 100(8):2411-8. PubMed ID: 19119005 [Abstract] [Full Text] [Related]
16. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD. Appl Biochem Biotechnol; 2002 Apr 05; 98-100():641-54. PubMed ID: 12018289 [Abstract] [Full Text] [Related]
17. A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Panagiotopoulos IA, Chandra RP, Saddler JN. Bioresour Technol; 2013 Feb 05; 130():570-7. PubMed ID: 23334012 [Abstract] [Full Text] [Related]
18. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Singh R, Varma AJ, Seeta Laxman R, Rao M. Bioresour Technol; 2009 Dec 05; 100(24):6679-81. PubMed ID: 19683917 [Abstract] [Full Text] [Related]
19. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN. Biotechnol Bioeng; 2002 Mar 20; 77(6):678-84. PubMed ID: 11807763 [Abstract] [Full Text] [Related]
20. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Tian D, Chandra RP, Lee JS, Lu C, Saddler JN. Biotechnol Biofuels; 2017 Mar 20; 10():157. PubMed ID: 28649276 [Abstract] [Full Text] [Related] Page: [Next] [New Search]