These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 20571702
1. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR. Chem Commun (Camb); 2010 Sep 07; 46(33):6045-7. PubMed ID: 20571702 [Abstract] [Full Text] [Related]
2. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells. Giroud F, Sawada K, Taya M, Cosnier S. Biosens Bioelectron; 2017 Jan 15; 87():957-963. PubMed ID: 27665518 [Abstract] [Full Text] [Related]
3. Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Bourourou M, Elouarzaki K, Lalaoui N, Agnès C, Le Goff A, Holzinger M, Maaref A, Cosnier S. Chemistry; 2013 Jul 08; 19(28):9371-5. PubMed ID: 23740491 [Abstract] [Full Text] [Related]
4. Bioelectrocatalytic generation of directly readable code: harnessing cathodic current for long-term information relay. Strack G, Luckarift HR, Nichols R, Cozart K, Katz E, Johnson GR. Chem Commun (Camb); 2011 Jul 21; 47(27):7662-4. PubMed ID: 21660357 [Abstract] [Full Text] [Related]
5. Wiring laccase on covalently modified graphene: carbon nanotube assemblies for the direct bio-electrocatalytic reduction of oxygen. Lalaoui N, Le Goff A, Holzinger M, Mermoux M, Cosnier S. Chemistry; 2015 Feb 16; 21(8):3198-201. PubMed ID: 25504469 [Abstract] [Full Text] [Related]
8. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Lalaoui N, Le Goff A, Holzinger M, Cosnier S. Chemistry; 2015 Nov 16; 21(47):16868-73. PubMed ID: 26449635 [Abstract] [Full Text] [Related]
11. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two. Sepunaru L, Laborda E, Compton RG. Chemistry; 2016 Apr 18; 22(17):5904-8. PubMed ID: 26934203 [Abstract] [Full Text] [Related]
12. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Lalaoui N, de Poulpiquet A, Haddad R, Le Goff A, Holzinger M, Gounel S, Mermoux M, Infossi P, Mano N, Lojou E, Cosnier S. Chem Commun (Camb); 2015 May 01; 51(35):7447-50. PubMed ID: 25845356 [Abstract] [Full Text] [Related]
13. Modification of carbon nanotube electrodes with 1-pyrenebutanoic acid, succinimidyl ester for enhanced bioelectrocatalysis. Strack G, Nichols R, Atanassov P, Luckarift HR, Johnson GR. Methods Mol Biol; 2013 May 01; 1051():217-28. PubMed ID: 23934807 [Abstract] [Full Text] [Related]
20. Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Lee YM, Kwon OY, Yoon YJ, Ryu K. Biotechnol Lett; 2006 Jan 01; 28(1):39-43. PubMed ID: 16369873 [Abstract] [Full Text] [Related] Page: [Next] [New Search]