These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
436 related items for PubMed ID: 20573542
1. Customized stimulation enhances performance of independent binary SSVEP-BCIs. Lopez-Gordo MA, Prieto A, Pelayo F, Morillas C. Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542 [Abstract] [Full Text] [Related]
2. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing. Wu CH, Chang HC, Lee PL, Li KS, Sie JJ, Sun CW, Yang CY, Li PH, Deng HT, Shyu KK. J Neurosci Methods; 2011 Mar 15; 196(1):170-81. PubMed ID: 21194547 [Abstract] [Full Text] [Related]
3. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli. Yoshimura N, Itakura N. Electromyogr Clin Neurophysiol; 2008 Mar 15; 48(1):43-51. PubMed ID: 18338534 [Abstract] [Full Text] [Related]
4. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C, Allison BZ, Altstätter C, Neuper C. J Neural Eng; 2011 Apr 15; 8(2):025010. PubMed ID: 21436538 [Abstract] [Full Text] [Related]
5. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 15; 13(2):172-8. PubMed ID: 16003896 [Abstract] [Full Text] [Related]
6. An independent brain-computer interface using covert non-spatial visual selective attention. Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S. J Neural Eng; 2010 Feb 15; 7(1):16010. PubMed ID: 20083864 [Abstract] [Full Text] [Related]
7. Complex-valued spatial filters for SSVEP-based BCIs with phase coding. Falzon O, Camilleri K, Muscat J. IEEE Trans Biomed Eng; 2012 Sep 15; 59(9):2486-95. PubMed ID: 22736630 [Abstract] [Full Text] [Related]
8. Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application. Molina GG, Mihajlovic V. Biomed Tech (Berl); 2010 Jun 15; 55(3):173-82. PubMed ID: 20415628 [Abstract] [Full Text] [Related]
9. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G. J Neural Eng; 2010 Apr 15; 7(2):26007. PubMed ID: 20332550 [Abstract] [Full Text] [Related]
10. An SSVEP-based BCI using high duty-cycle visual flicker. Lee PL, Yeh CL, Cheng JY, Yang CY, Lan GY. IEEE Trans Biomed Eng; 2011 Dec 15; 58(12):3350-9. PubMed ID: 21788179 [Abstract] [Full Text] [Related]
11. A high-speed BCI based on code modulation VEP. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S. J Neural Eng; 2011 Apr 15; 8(2):025015. PubMed ID: 21436527 [Abstract] [Full Text] [Related]
12. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. Chen X, Wang Y, Zhang S, Xu S, Gao X. J Neural Eng; 2019 Oct 10; 16(6):066007. PubMed ID: 31220820 [Abstract] [Full Text] [Related]
13. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli. Kimura Y, Tanaka T, Higashi H, Morikawa N. IEEE Trans Biomed Eng; 2013 Oct 10; 60(10):2831-8. PubMed ID: 23739780 [Abstract] [Full Text] [Related]
14. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier. Luo A, Sullivan TJ. J Neural Eng; 2010 Apr 10; 7(2):26010. PubMed ID: 20332551 [Abstract] [Full Text] [Related]
15. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH, Baek HJ, Lee SM, Park KS. Clin Neurophysiol; 2014 Jul 10; 125(7):1380-91. PubMed ID: 24368034 [Abstract] [Full Text] [Related]
16. Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI. Müller-Putz GR, Eder E, Wriessnegger SC, Pfurtscheller G. J Neurosci Methods; 2008 Feb 15; 168(1):174-81. PubMed ID: 17980917 [Abstract] [Full Text] [Related]
17. A transient VEP-based real-time brain-computer interface using non-direct gazed visual stimuli. Yoshimura N, Itakura N. Electromyogr Clin Neurophysiol; 2009 Feb 15; 49(8):323-35. PubMed ID: 20058543 [Abstract] [Full Text] [Related]
18. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI). Hwang HJ, Hwan Kim D, Han CH, Im CH. Brain Res; 2013 Jun 17; 1515():66-77. PubMed ID: 23587933 [Abstract] [Full Text] [Related]
19. Steady-state visually evoked potential correlates of object recognition. Kaspar K, Hassler U, Martens U, Trujillo-Barreto N, Gruber T. Brain Res; 2010 Jul 09; 1343():112-21. PubMed ID: 20450897 [Abstract] [Full Text] [Related]
20. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D, Huang B, Wu W, Li S. Int J Neural Syst; 2015 Nov 09; 25(7):1550030. PubMed ID: 26246229 [Abstract] [Full Text] [Related] Page: [Next] [New Search]