These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 20575050

  • 1. Prediction of onset of crystallization in amorphous pharmaceutical systems: phenobarbital, nifedipine/PVP, and phenobarbital/PVP.
    Caron V, Bhugra C, Pikal MJ.
    J Pharm Sci; 2010 Sep; 99(9):3887-900. PubMed ID: 20575050
    [Abstract] [Full Text] [Related]

  • 2. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions.
    Aso Y, Yoshioka S, Kojima S.
    J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195
    [Abstract] [Full Text] [Related]

  • 3. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.
    Aso Y, Yoshioka S, Kojima S.
    J Pharm Sci; 2000 Mar; 89(3):408-16. PubMed ID: 10707020
    [Abstract] [Full Text] [Related]

  • 4. Molecular mobility of nifedipine-PVP and phenobarbital-PVP solid dispersions as measured by 13C-NMR spin-lattice relaxation time.
    Aso Y, Yoshioka S.
    J Pharm Sci; 2006 Feb; 95(2):318-25. PubMed ID: 16372315
    [Abstract] [Full Text] [Related]

  • 5. Correlation between molecular mobility and crystal growth of amorphous phenobarbital and phenobarbital with polyvinylpyrrolidone and L-proline.
    Korhonen O, Bhugra C, Pikal MJ.
    J Pharm Sci; 2008 Sep; 97(9):3830-41. PubMed ID: 18200526
    [Abstract] [Full Text] [Related]

  • 6. Sudden rise of crystal growth rate of nifedipine near T(g) without and with polyvinylpyrrolidone.
    Ishida H, Wu T, Yu L.
    J Pharm Sci; 2007 May; 96(5):1131-8. PubMed ID: 17455342
    [Abstract] [Full Text] [Related]

  • 7. Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times.
    Bhugra C, Shmeis R, Krill SL, Pikal MJ.
    J Pharm Sci; 2008 Jan; 97(1):455-72. PubMed ID: 17854050
    [Abstract] [Full Text] [Related]

  • 8. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility.
    Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, Lechuga-Ballesteros D.
    J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303
    [Abstract] [Full Text] [Related]

  • 9. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by (13)C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature.
    Aso Y, Yoshioka S, Kojima S.
    J Pharm Sci; 2001 Jun; 90(6):798-806. PubMed ID: 11357180
    [Abstract] [Full Text] [Related]

  • 10. The role of polymer concentration on the molecular mobility and physical stability of nifedipine solid dispersions.
    Kothari K, Ragoonanan V, Suryanarayanan R.
    Mol Pharm; 2015 May 04; 12(5):1477-84. PubMed ID: 25894099
    [Abstract] [Full Text] [Related]

  • 11. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture.
    Rumondor AC, Marsac PJ, Stanford LA, Taylor LS.
    Mol Pharm; 2009 May 04; 6(5):1492-505. PubMed ID: 19634917
    [Abstract] [Full Text] [Related]

  • 12. Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature.
    Miyazaki T, Yoshioka S, Aso Y, Kawanishi T.
    Int J Pharm; 2007 May 04; 336(1):191-5. PubMed ID: 17184940
    [Abstract] [Full Text] [Related]

  • 13. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, Bauer M.
    J Pharm Sci; 2004 Jan 04; 93(1):218-33. PubMed ID: 14648651
    [Abstract] [Full Text] [Related]

  • 14. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water.
    Marsac PJ, Konno H, Rumondor AC, Taylor LS.
    Pharm Res; 2008 Mar 04; 25(3):647-56. PubMed ID: 17846870
    [Abstract] [Full Text] [Related]

  • 15. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.
    Caron V, Tajber L, Corrigan OI, Healy AM.
    Mol Pharm; 2011 Apr 04; 8(2):532-42. PubMed ID: 21323367
    [Abstract] [Full Text] [Related]

  • 16. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition.
    Bhugra C, Shmeis R, Krill SL, Pikal MJ.
    Pharm Res; 2006 Oct 04; 23(10):2277-90. PubMed ID: 16933094
    [Abstract] [Full Text] [Related]

  • 17. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility.
    Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R.
    Mol Pharm; 2014 Nov 03; 11(11):4228-37. PubMed ID: 25325389
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A comparison of the physical stability of amorphous felodipine and nifedipine systems.
    Marsac PJ, Konno H, Taylor LS.
    Pharm Res; 2006 Oct 03; 23(10):2306-16. PubMed ID: 16927182
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.