These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 20580296

  • 1. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y, Li D, Ji B, Shi X, Gao H.
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [Abstract] [Full Text] [Related]

  • 2. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE, Trylska J, Tozzini V, McCammon JA.
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [Abstract] [Full Text] [Related]

  • 3. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease.
    Li D, Liu MS, Ji B, Hwang KC, Huang Y.
    Chem Biol Drug Des; 2012 Sep; 80(3):440-54. PubMed ID: 22621379
    [Abstract] [Full Text] [Related]

  • 4. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D, Liu MS, Ji B, Hwang K, Huang Y.
    J Chem Phys; 2009 Jun 07; 130(21):215102. PubMed ID: 19508101
    [Abstract] [Full Text] [Related]

  • 5. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV.
    J Chem Inf Model; 2008 Sep 07; 48(9):1909-19. PubMed ID: 18710212
    [Abstract] [Full Text] [Related]

  • 6. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG.
    Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019
    [Abstract] [Full Text] [Related]

  • 7. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL, Lin JH, Andrew McCammon J.
    Chem Biol Drug Des; 2006 May 01; 67(5):336-45. PubMed ID: 16784458
    [Abstract] [Full Text] [Related]

  • 8. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL, Lin JH, McCammon JA.
    Biopolymers; 2006 Jun 15; 82(3):272-84. PubMed ID: 16508951
    [Abstract] [Full Text] [Related]

  • 9. Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode.
    Mahmoud KA, Luong JH.
    Anal Chem; 2008 Sep 15; 80(18):7056-62. PubMed ID: 18707132
    [Abstract] [Full Text] [Related]

  • 10. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M, Kríz Z, Havlas Z.
    Proteins; 2004 Nov 01; 57(2):279-93. PubMed ID: 15340915
    [Abstract] [Full Text] [Related]

  • 11. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation.
    Friedman SH, Ganapathi PS, Rubin Y, Kenyon GL.
    J Med Chem; 1998 Jun 18; 41(13):2424-9. PubMed ID: 9632374
    [Abstract] [Full Text] [Related]

  • 12. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.
    Zhu Z, Schuster DI, Tuckerman ME.
    Biochemistry; 2003 Feb 11; 42(5):1326-33. PubMed ID: 12564936
    [Abstract] [Full Text] [Related]

  • 13. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S, Shah K.
    In Silico Biol; 2008 Feb 11; 8(5-6):427-47. PubMed ID: 19374129
    [Abstract] [Full Text] [Related]

  • 14. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL, Carlson HA.
    J Am Chem Soc; 2004 Oct 20; 126(41):13276-81. PubMed ID: 15479081
    [Abstract] [Full Text] [Related]

  • 15. Nonpeptidal P2 ligands for HIV protease inhibitors: structure-based design, synthesis, and biological evaluation.
    Ghosh AK, Kincaid JF, Walters DE, Chen Y, Chaudhuri NC, Thompson WJ, Culberson C, Fitzgerald PM, Lee HY, McKee SP, Munson PM, Duong TT, Darke PL, Zugay JA, Schleif WA, Axel MG, Lin J, Huff JR.
    J Med Chem; 1996 Aug 16; 39(17):3278-90. PubMed ID: 8765511
    [Abstract] [Full Text] [Related]

  • 16. Cyclopropane-derived peptidomimetics. Design, synthesis, evaluation, and structure of novel HIV-1 protease inhibitors.
    Martin SF, Dorsey GO, Gane T, Hillier MC, Kessler H, Baur M, Mathä B, Erickson JW, Bhat TN, Munshi S, Gulnik SV, Topol IA.
    J Med Chem; 1998 May 07; 41(10):1581-97. PubMed ID: 9572884
    [Abstract] [Full Text] [Related]

  • 17. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V, Trylska J, Chang CE, McCammon JA.
    J Struct Biol; 2007 Mar 07; 157(3):606-15. PubMed ID: 17029846
    [Abstract] [Full Text] [Related]

  • 18. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK, Wright DW, Kenway OA, Coveney PV.
    J Chem Inf Model; 2010 May 24; 50(5):890-905. PubMed ID: 20384328
    [Abstract] [Full Text] [Related]

  • 19. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T, Yu R.
    J Med Chem; 2007 Mar 22; 50(6):1177-88. PubMed ID: 17300185
    [Abstract] [Full Text] [Related]

  • 20. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y, Yang CY, Wang S.
    J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.