These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 20584861

  • 21. Environmental exposure characterization of fish processing workers.
    Jeebhay MF, Robins TG, Seixas N, Baatjies R, George DA, Rusford E, Lehrer SB, Lopata AL.
    Ann Occup Hyg; 2005 Jul; 49(5):423-37. PubMed ID: 15705596
    [Abstract] [Full Text] [Related]

  • 22. Temporal evolution of nanoparticle aerosols in workplace exposure.
    Seipenbusch M, Binder A, Kasper G.
    Ann Occup Hyg; 2008 Nov; 52(8):707-16. PubMed ID: 18927101
    [Abstract] [Full Text] [Related]

  • 23. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone.
    Lidén G, Surakka J.
    Ann Occup Hyg; 2009 Mar; 53(2):99-116. PubMed ID: 19196747
    [Abstract] [Full Text] [Related]

  • 24. A comparison and critique of historical and current exposure assessment methods for beryllium: implications for evaluating risk of chronic beryllium disease.
    Kolanz ME, Madl AK, Kelsh MA, Kent MS, Kalmes RM, Paustenbach DJ.
    Appl Occup Environ Hyg; 2001 May; 16(5):593-614. PubMed ID: 11370938
    [Abstract] [Full Text] [Related]

  • 25. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.
    Methner M, Beaucham C, Crawford C, Hodson L, Geraci C.
    J Occup Environ Hyg; 2012 May; 9(9):543-55. PubMed ID: 22816668
    [Abstract] [Full Text] [Related]

  • 26. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures.
    Niu J, Rasmussen PE, Magee R, Nilsson G.
    Environ Sci Process Impacts; 2015 Jan; 17(1):98-109. PubMed ID: 25410705
    [Abstract] [Full Text] [Related]

  • 27. Risk assessment of exposure to indoor aerosols associated with Chinese cooking.
    See SW, Balasubramanian R.
    Environ Res; 2006 Oct; 102(2):197-204. PubMed ID: 16457802
    [Abstract] [Full Text] [Related]

  • 28. Video exposure monitoring as part of a strategy to assess exposure to nanoparticles.
    Beurskens-Comuth PA, Verbist K, Brouwer D.
    Ann Occup Hyg; 2011 Oct; 55(8):937-45. PubMed ID: 21841152
    [Abstract] [Full Text] [Related]

  • 29. Workplace exposure to engineered nanoparticles.
    Plitzko S.
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():25-9. PubMed ID: 19558230
    [Abstract] [Full Text] [Related]

  • 30. Experimental investigation of the concept of a 'breathing zone' using a mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum.
    Lidén G, Waher J.
    Ann Occup Hyg; 2010 Jan; 54(1):100-16. PubMed ID: 19955328
    [Abstract] [Full Text] [Related]

  • 31. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment.
    Todea AM, Beckmann S, Kaminski H, Bard D, Bau S, Clavaguera S, Dahmann D, Dozol H, Dziurowitz N, Elihn K, Fierz M, Lidén G, Meyer-Plath A, Monz C, Neumann V, Pelzer J, Simonow BK, Thali P, Tuinman I, van der Vleuten A, Vroomen H, Asbach C.
    Sci Total Environ; 2017 Dec 15; 605-606():929-945. PubMed ID: 28688352
    [Abstract] [Full Text] [Related]

  • 32. Comparability of portable nanoparticle exposure monitors.
    Asbach C, Kaminski H, von Barany D, Kuhlbusch TA, Monz C, Dziurowitz N, Pelzer J, Vossen K, Berlin K, Dietrich S, Götz U, Kiesling HJ, Schierl R, Dahmann D.
    Ann Occup Hyg; 2012 Jul 15; 56(5):606-21. PubMed ID: 22752099
    [Abstract] [Full Text] [Related]

  • 33. Relationships between number, surface area, and mass concentrations of different nanoparticles in workplaces.
    Zou H, Zhang Q, Xing M, Gao X, Zhou L, Tollerud DJ, Tang S, Zhang M.
    Environ Sci Process Impacts; 2015 Aug 15; 17(8):1470-81. PubMed ID: 26166442
    [Abstract] [Full Text] [Related]

  • 34. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O, Grinshpun SA, Fauvel S, Basso G.
    Ann Occup Hyg; 2004 Jun 15; 48(4):351-68. PubMed ID: 15191944
    [Abstract] [Full Text] [Related]

  • 35. Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces.
    Tsai CJ, Liu CN, Hung SM, Chen SC, Uang SN, Cheng YS, Zhou Y.
    Environ Sci Technol; 2012 Apr 17; 46(8):4546-52. PubMed ID: 22435654
    [Abstract] [Full Text] [Related]

  • 36. Is total mass or mass of alveolar-deposited airborne particles of beryllium a better predictor of the prevalence of disease? A preliminary study of a beryllium processing facility.
    Kent MS, Robins TG, Madl AK.
    Appl Occup Environ Hyg; 2001 May 17; 16(5):539-58. PubMed ID: 11370934
    [Abstract] [Full Text] [Related]

  • 37. Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory.
    Xing M, Zou H, Gao X, Chang B, Tang S, Zhang M.
    Environ Sci Process Impacts; 2015 Mar 17; 17(3):656-66. PubMed ID: 25658970
    [Abstract] [Full Text] [Related]

  • 38. [Exposure to total and respirable dust of aluminum and its compounds].
    Kondej D, Gaweda E.
    Med Pr; 2008 Mar 17; 59(5):381-6. PubMed ID: 19227883
    [Abstract] [Full Text] [Related]

  • 39. Excursion guidance criteria to guide control of peak emission and exposure to airborne engineered particles.
    McGarry P, Morawska L, Knibbs LD, Morris H.
    J Occup Environ Hyg; 2013 Mar 17; 10(11):640-51. PubMed ID: 24116668
    [Abstract] [Full Text] [Related]

  • 40. Particle concentration profile in a vertical displacement flow: a study in an industrial hall.
    Hämeri K, Gaman A, Hussein T, Räisänen J, Niemelä R, Aalto PP, Kulmala M.
    Appl Occup Environ Hyg; 2003 Mar 17; 18(3):183-92. PubMed ID: 12573964
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.