These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 20596256

  • 1. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.
    Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256
    [Abstract] [Full Text] [Related]

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 3. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD.
    Invest Ophthalmol Vis Sci; 2008 Mar 14; 49(3):1016-22. PubMed ID: 18326725
    [Abstract] [Full Text] [Related]

  • 4. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ.
    Mol Vis; 2011 Mar 14; 17():1457-67. PubMed ID: 21677790
    [Abstract] [Full Text] [Related]

  • 5. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L, Liu D, Liu P, Yu Y.
    Mol Vis; 2011 Mar 14; 17():3423-36. PubMed ID: 22219638
    [Abstract] [Full Text] [Related]

  • 6. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S.
    Invest Ophthalmol Vis Sci; 2011 Jun 13; 52(7):4182-91. PubMed ID: 21436267
    [Abstract] [Full Text] [Related]

  • 7. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
    Andley UP, Malone JP, Townsend RR.
    PLoS One; 2014 Jun 13; 9(4):e95507. PubMed ID: 24760011
    [Abstract] [Full Text] [Related]

  • 8. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W, Calvin HI, David LL, Wu K, McCormack AL, Zhu GP, Fu SC.
    Exp Eye Res; 2002 Sep 13; 75(3):335-46. PubMed ID: 12384096
    [Abstract] [Full Text] [Related]

  • 9. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH.
    Mol Vis; 2013 Sep 13; 19():623-37. PubMed ID: 23559856
    [Abstract] [Full Text] [Related]

  • 10. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 11. Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression.
    Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J, Xu G, Kong X, Hu L.
    BMC Mol Biol; 2009 Feb 19; 10():10. PubMed ID: 19224648
    [Abstract] [Full Text] [Related]

  • 12. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P, Horwitz J, Ding L, Corbin RW, Posner M.
    Mol Vis; 2013 Feb 19; 19():408-17. PubMed ID: 23441112
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP, McArthur JD, Truscott RJ, Aquilina JA.
    Biochim Biophys Acta; 2011 May 19; 1814(5):647-56. PubMed ID: 21447408
    [Abstract] [Full Text] [Related]

  • 15. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643
    [Abstract] [Full Text] [Related]

  • 16. Characterization of covalent multimers of crystallins in aging human lenses.
    Srivastava OP, Kirk MC, Srivastava K.
    J Biol Chem; 2004 Mar 19; 279(12):10901-9. PubMed ID: 14623886
    [Abstract] [Full Text] [Related]

  • 17. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P.
    Mol Biosyst; 2012 Mar 19; 8(3):888-901. PubMed ID: 22269969
    [Abstract] [Full Text] [Related]

  • 18. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y, Duncan MK, David LL.
    Invest Ophthalmol Vis Sci; 2002 Jan 19; 43(1):205-15. PubMed ID: 11773033
    [Abstract] [Full Text] [Related]

  • 19. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K, Chaves JM, Srivastava OP, Kirk M.
    Exp Eye Res; 2008 Oct 19; 87(4):356-66. PubMed ID: 18662688
    [Abstract] [Full Text] [Related]

  • 20. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW.
    Mol Vis; 2008 Apr 25; 14():806-14. PubMed ID: 18449354
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.