These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
391 related items for PubMed ID: 20602968
1. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors. Deng C, Li J, Ma W. Talanta; 2010 Jul 15; 82(2):771-4. PubMed ID: 20602968 [Abstract] [Full Text] [Related]
2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. J Am Chem Soc; 2004 Jan 14; 126(1):301-10. PubMed ID: 14709096 [Abstract] [Full Text] [Related]
3. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H. J Am Chem Soc; 2005 Feb 02; 127(4):1242-50. PubMed ID: 15669863 [Abstract] [Full Text] [Related]
4. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR, Medintz IL, Mattoussi H. Chemphyschem; 2006 Jan 16; 7(1):47-57. PubMed ID: 16370019 [Abstract] [Full Text] [Related]
5. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T, Medintz IL, Wang X, English DS, Mattoussi H. J Am Chem Soc; 2006 Nov 29; 128(47):15324-31. PubMed ID: 17117885 [Abstract] [Full Text] [Related]
6. A positively charged QDs-based FRET probe for micrococcal nuclease detection. Qiu T, Zhao D, Zhou G, Liang Y, He Z, Liu Z, Peng X, Zhou L. Analyst; 2010 Sep 29; 135(9):2394-9. PubMed ID: 20676436 [Abstract] [Full Text] [Related]
7. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H, Schöps O, Woggon U, Niemeyer CM. J Am Chem Soc; 2008 Apr 09; 130(14):4815-27. PubMed ID: 18338889 [Abstract] [Full Text] [Related]
8. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL. J Am Chem Soc; 2010 Dec 29; 132(51):18177-90. PubMed ID: 21141858 [Abstract] [Full Text] [Related]
9. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. Kalinin S, Sisamakis E, Magennis SW, Felekyan S, Seidel CA. J Phys Chem B; 2010 May 13; 114(18):6197-206. PubMed ID: 20397670 [Abstract] [Full Text] [Related]
10. Strength in numbers: effects of acceptor abundance on FRET efficiency. Fábián ÁI, Rente T, Szöllosi J, Mátyus L, Jenei A. Chemphyschem; 2010 Dec 03; 11(17):3713-21. PubMed ID: 20936620 [Abstract] [Full Text] [Related]
11. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye. Sadhu S, Patra A. Chemphyschem; 2008 Oct 06; 9(14):2052-8. PubMed ID: 18756556 [Abstract] [Full Text] [Related]
12. Applying spectral fingerprinting to the analysis of FRET images. Neher RA, Neher E. Microsc Res Tech; 2004 Jun 01; 64(2):185-95. PubMed ID: 15352090 [Abstract] [Full Text] [Related]
13. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Zhang CY, Johnson LW. Anal Chem; 2006 Aug 01; 78(15):5532-7. PubMed ID: 16878892 [Abstract] [Full Text] [Related]
14. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL. J Am Chem Soc; 2012 Jan 25; 134(3):1876-91. PubMed ID: 22220737 [Abstract] [Full Text] [Related]
15. Two-step FRET as a structural tool. Watrob HM, Pan CP, Barkley MD. J Am Chem Soc; 2003 Jun 18; 125(24):7336-43. PubMed ID: 12797808 [Abstract] [Full Text] [Related]
16. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L, Rosenzweig N, Rosenzweig Z. Anal Chem; 2007 Jan 01; 79(1):208-14. PubMed ID: 17194141 [Abstract] [Full Text] [Related]
17. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB. J Microsc; 2008 Jul 01; 231(Pt 1):97-104. PubMed ID: 18638193 [Abstract] [Full Text] [Related]
18. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L, Olson DP, Wu X, Karpova TS, McNally JG, Lipsky PE. Cytometry A; 2003 Oct 01; 55(2):71-85. PubMed ID: 14505312 [Abstract] [Full Text] [Related]
19. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA. Biju V, Anas A, Akita H, Shibu ES, Itoh T, Harashima H, Ishikawa M. ACS Nano; 2012 May 22; 6(5):3776-88. PubMed ID: 22468986 [Abstract] [Full Text] [Related]
20. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB, Kremers GJ, Adjobo-Hermans MJ, Gadella TW. J Microsc; 2005 Jun 22; 218(Pt 3):253-62. PubMed ID: 15958019 [Abstract] [Full Text] [Related] Page: [Next] [New Search]