These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 20603378
1. Triggered infrared spectroscopy for investigating metalloprotein chemistry. Vincent KA. Philos Trans A Math Phys Eng Sci; 2010 Aug 13; 368(1924):3713-31. PubMed ID: 20603378 [Abstract] [Full Text] [Related]
2. Electrochemically induced far-infrared difference spectroscopy on metalloproteins using advanced synchrotron technology. Vita N, Brubach JB, Hienerwadel R, Bremond N, Berthomieu D, Roy P, Berthomieu C. Anal Chem; 2013 Mar 05; 85(5):2891-8. PubMed ID: 23360365 [Abstract] [Full Text] [Related]
3. Amide I two-dimensional infrared spectroscopy of proteins. Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A. Acc Chem Res; 2008 Mar 05; 41(3):432-41. PubMed ID: 18288813 [Abstract] [Full Text] [Related]
4. Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures. Nienhaus K, Nienhaus GU. Methods Enzymol; 2008 Mar 05; 437():347-78. PubMed ID: 18433637 [Abstract] [Full Text] [Related]
5. Electrochemically induced FTIR difference spectroscopy in the mid- to far infrared (200 microm) domain: a new setup for the analysis of metal-ligand interactions in redox proteins. Berthomieu C, Marboutin L, Dupeyrat F, Bouyer P. Biopolymers; 2006 Jul 05; 82(4):363-7. PubMed ID: 16453337 [Abstract] [Full Text] [Related]
6. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Radu I, Schleeger M, Bolwien C, Heberle J. Photochem Photobiol Sci; 2009 Nov 05; 8(11):1517-28. PubMed ID: 19862409 [Abstract] [Full Text] [Related]
7. Nanoscale spectroscopy and imaging of hemoglobin. Kennedy E, Yarrow F, Rice JH. J Biophotonics; 2011 Sep 05; 4(9):588-91. PubMed ID: 21374826 [Abstract] [Full Text] [Related]
11. Use of infrared spectroscopy to monitor protein structure and stability. Manning MC. Expert Rev Proteomics; 2005 Oct 11; 2(5):731-43. PubMed ID: 16209652 [Abstract] [Full Text] [Related]
12. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin. Kakuta M, Hinsmann P, Manz A, Lendl B. Lab Chip; 2003 May 11; 3(2):82-5. PubMed ID: 15100787 [Abstract] [Full Text] [Related]
13. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Carbonaro M, Nucara A. Amino Acids; 2010 Mar 11; 38(3):679-90. PubMed ID: 19350368 [Abstract] [Full Text] [Related]
17. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. Ojeda JJ, Dittrich M. Methods Mol Biol; 2012 Jun 30; 881():187-211. PubMed ID: 22639215 [Abstract] [Full Text] [Related]
18. Monitoring protein-ligand interactions by time-resolved FTIR difference spectroscopy. Kötting C, Gerwert K. Methods Mol Biol; 2005 Jun 30; 305():261-86. PubMed ID: 15940002 [Abstract] [Full Text] [Related]
19. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C, Sheppard N. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan 30; 78(1):7-28. PubMed ID: 21123107 [Abstract] [Full Text] [Related]