These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 20619474
1. Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries. Judet-Correia D, Bollaert S, Duquenne A, Charpentier C, Bensoussan M, Dantigny P. Int J Food Microbiol; 2010 Aug 15; 142(1-2):106-13. PubMed ID: 20619474 [Abstract] [Full Text] [Related]
2. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S, Chamont S, Blancard D, Dubourdieu D, Darriet P. Antonie Van Leeuwenhoek; 2005 Aug 15; 88(2):131-9. PubMed ID: 16096689 [Abstract] [Full Text] [Related]
5. Impact of the Botrytis cinerea strain and metabolism on (-)-geosmin production by Penicillium expansum in grape juice. La Guerche S, De Senneville L, Blancard D, Darriet P. Antonie Van Leeuwenhoek; 2007 Oct 15; 92(3):331-41. PubMed ID: 17562219 [Abstract] [Full Text] [Related]
7. Interaction with Penicillium expansum enhances Botrytis cinerea growth in grape juice medium and prevents patulin accumulation in vitro. Morales H, Paterson RR, Venâncio A, Lima N. Lett Appl Microbiol; 2013 May 15; 56(5):356-60. PubMed ID: 23384314 [Abstract] [Full Text] [Related]
9. Modelling the inhibitory effect of copper sulfate on the growth of Penicillium expansum and Botrytis cinerea. Judet-Correia D, Charpentier C, Bensoussan M, Dantigny P. Lett Appl Microbiol; 2011 Nov 15; 53(5):558-64. PubMed ID: 21899581 [Abstract] [Full Text] [Related]
11. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Calvo J, Calvente V, de Orellano ME, Benuzzi D, Sanz de Tosetti MI. Int J Food Microbiol; 2007 Feb 15; 113(3):251-7. PubMed ID: 17007950 [Abstract] [Full Text] [Related]
12. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Baert K, Valero A, De Meulenaer B, Samapundo S, Ahmed MM, Bo L, Debevere J, Devlieghere F. Int J Food Microbiol; 2007 Sep 15; 118(2):139-50. PubMed ID: 17698233 [Abstract] [Full Text] [Related]
15. Modelling the effect of temperature and water activity on the growth of two ochratoxigenic strains of Aspergillus carbonarius from Greek wine grapes. Tassou CC, Panagou EZ, Natskoulis P, Magan N. J Appl Microbiol; 2007 Dec 15; 103(6):2267-76. PubMed ID: 18045410 [Abstract] [Full Text] [Related]
17. Modelling the growth of pear postharvest fungal isolates at different temperatures. Sardella D, Gatt R, Valdramidis VP. Food Microbiol; 2018 Dec 15; 76():450-456. PubMed ID: 30166173 [Abstract] [Full Text] [Related]
18. A CAPS test allowing a rapid distinction of Penicillium expansum among fungal species collected on grape berries, inferred from the sequence and secondary structure of the mitochondrial SSU-rRNA. Garcia C, La Guerche S, Mouhamadou B, Férandon C, Labarère J, Blancard D, Darriet P, Barroso G. Int J Food Microbiol; 2006 Oct 01; 111(3):183-90. PubMed ID: 16935376 [Abstract] [Full Text] [Related]