These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles. Moriyama Y, Maeda M, Futai M. J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857 [Abstract] [Full Text] [Related]
5. Glutamate transport driven by an electrochemical gradient of sodium ion in membrane vesicles of Escherichia coli B. Hasan SM, Tsuchiya T. Biochem Biophys Res Commun; 1977 Sep 09; 78(1):122-8. PubMed ID: 334163 [No Abstract] [Full Text] [Related]
7. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles. Verkhovskaya ML, Verkhovsky MI, Wikström M. Biochim Biophys Acta; 1996 Mar 28; 1273(3):207-16. PubMed ID: 8616158 [Abstract] [Full Text] [Related]
8. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake. Lanyi JK, Yearwood-Drayton V, MacDonald RE. Biochemistry; 1976 Apr 20; 15(8):1595-603. PubMed ID: 1268186 [Abstract] [Full Text] [Related]
9. ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. Grinius L, Slusnyte R, Griniuviene B. FEBS Lett; 1975 Oct 01; 57(3):290-3. PubMed ID: 241667 [No Abstract] [Full Text] [Related]
10. L-glutamate transport in renal plasma membrane vesicles. Sacktor B. Mol Cell Biochem; 1981 Sep 25; 39():239-51. PubMed ID: 6118822 [Abstract] [Full Text] [Related]
11. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12. Kahane S, Marcus M, Barash H, Halpern YS. FEBS Lett; 1975 Aug 15; 56(2):235-9. PubMed ID: 1098933 [No Abstract] [Full Text] [Related]
12. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. Willis RC, Furlong CE. J Biol Chem; 1975 Apr 10; 250(7):2581-6. PubMed ID: 1091636 [Abstract] [Full Text] [Related]
13. Evidence for an electrogenic 3-deoxy-2-oxo-D-gluconate--proton co-transport driven by the protonmotive force in Escherichia coli K12. Lagarde A. Biochem J; 1977 Nov 15; 168(2):211-21. PubMed ID: 23116 [Abstract] [Full Text] [Related]
14. Efflux of L-glutamate by synaptic plasma membrane vesicles isolated from rat brain. Kanner BI, Marva E. Biochemistry; 1982 Jun 22; 21(13):3143-7. PubMed ID: 6125209 [Abstract] [Full Text] [Related]
15. Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus strain, TA2.A1. Peddie CJ, Cook GM, Morgan HW. J Bacteriol; 1999 May 22; 181(10):3172-7. PubMed ID: 10322019 [Abstract] [Full Text] [Related]
17. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. Wilson DM, Alderette JF, Maloney PC, Wilson TH. J Bacteriol; 1976 Apr 01; 126(1):327-37. PubMed ID: 4427 [Abstract] [Full Text] [Related]
18. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. Altendorf K, Hirata H, Harold FM. J Biol Chem; 1975 Feb 25; 250(4):1405-12. PubMed ID: 1089658 [Abstract] [Full Text] [Related]
19. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Ramos S, Kaback HR. Biochemistry; 1977 Mar 08; 16(5):854-9. PubMed ID: 14665 [Abstract] [Full Text] [Related]
20. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli. Tsuchiya T, Hasan SM, Raven J. J Bacteriol; 1977 Sep 08; 131(3):848-53. PubMed ID: 330502 [Abstract] [Full Text] [Related] Page: [Next] [New Search]