These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 20626408

  • 21. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M, Shirakawa T.
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [Abstract] [Full Text] [Related]

  • 22. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery.
    Khedkar SA, Malde AK, Coutinho EC.
    J Mol Graph Model; 2005 Jan; 23(4):355-66. PubMed ID: 15670956
    [Abstract] [Full Text] [Related]

  • 23. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H, Tonge PJ.
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [Abstract] [Full Text] [Related]

  • 24. A new family of inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.
    Gasse C, Huteau V, Douguet D, Munier-Lehmann H, Pochet S.
    Nucleosides Nucleotides Nucleic Acids; 2007 Jan; 26(8-9):1057-61. PubMed ID: 18058536
    [No Abstract] [Full Text] [Related]

  • 25. Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase.
    Pandey S, Chatterjee A, Jaiswal S, Kumar S, Ramachandran R, Srivastava KK.
    Biochem Biophys Res Commun; 2016 Sep 16; 478(2):721-6. PubMed ID: 27498028
    [Abstract] [Full Text] [Related]

  • 26. Development of an ESI-LC-MS-based assay for kinetic evaluation of Mycobacterium tuberculosis shikimate kinase activity and inhibition.
    Simithy J, Gill G, Wang Y, Goodwin DC, Calderón AI.
    Anal Chem; 2015 Feb 17; 87(4):2129-36. PubMed ID: 25629762
    [Abstract] [Full Text] [Related]

  • 27. Shikimate kinase, a protein target for drug design.
    Coracini JD, de Azevedo WF.
    Curr Med Chem; 2014 Feb 17; 21(5):592-604. PubMed ID: 24164195
    [Abstract] [Full Text] [Related]

  • 28. Molecular models of tryptophan synthase from mycobacterium tuberculosis complexed with inhibitors.
    Dias MV, Canduri F, da Silveira NJ, Czekster CM, Basso LA, Palma MS, Santos DS, de Azevedo WF.
    Cell Biochem Biophys; 2006 Feb 17; 44(3):375-84. PubMed ID: 16679524
    [Abstract] [Full Text] [Related]

  • 29. Structure-based Discovery of Narirutin as a Shikimate kinase Inhibitor with Anti-tubercular Potency.
    Sahu PK, Mohapatra PK, Rajani DP, Raval MK.
    Curr Comput Aided Drug Des; 2020 Feb 17; 16(5):523-529. PubMed ID: 31654517
    [Abstract] [Full Text] [Related]

  • 30. Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints.
    Kumar A, Chaturvedi V, Bhatnagar S, Sinha S, Siddiqi MI.
    J Chem Inf Model; 2009 Jan 17; 49(1):35-42. PubMed ID: 19063713
    [Abstract] [Full Text] [Related]

  • 31. An overview of mechanism and chemical inhibitors of shikimate kinase.
    Chagaleti BK, Reddy MBR, Saravanan V, B S, D P, Senthil Kumar P, Kathiravan MK.
    J Biomol Struct Dyn; 2023 Jan 17; 41(23):14582-14598. PubMed ID: 36974959
    [Abstract] [Full Text] [Related]

  • 32. Rational design and 3D-pharmacophore mapping of 5'-thiourea-substituted alpha-thymidine analogues as mycobacterial TMPK inhibitors.
    Andrade CH, Pasqualoto KF, Ferreira EI, Hopfinger AJ.
    J Chem Inf Model; 2009 Apr 17; 49(4):1070-8. PubMed ID: 19296716
    [Abstract] [Full Text] [Related]

  • 33. Determination of the bound conformation of a competitive nanomolar inhibitor of mycobacterium tuberculosis type II dehydroquinase by NMR spectroscopy.
    Prazeres VF, Sánchez-Sixto C, Castedo L, Canales A, Cañada FJ, Jiménez-Barbero J, Lamb H, Hawkins AR, González-Bello C.
    ChemMedChem; 2006 Sep 17; 1(9):990-6. PubMed ID: 16952136
    [Abstract] [Full Text] [Related]

  • 34. Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential inhibitors against Mycobacterium tuberculosis.
    Minovski N, Perdih A, Novic M, Solmajer T.
    J Comput Chem; 2013 Apr 05; 34(9):790-801. PubMed ID: 23280926
    [Abstract] [Full Text] [Related]

  • 35. Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations.
    Vianna CP, de Azevedo WF.
    J Mol Model; 2012 Feb 05; 18(2):755-64. PubMed ID: 21594693
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition.
    Yang Y, Gao P, Liu Y, Ji X, Gan M, Guan Y, Hao X, Li Z, Xiao C.
    Bioorg Med Chem Lett; 2011 Jul 01; 21(13):3943-6. PubMed ID: 21641210
    [Abstract] [Full Text] [Related]

  • 38. Functionalized 3-amino-imidazo[1,2-a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors.
    Odell LR, Nilsson MT, Gising J, Lagerlund O, Muthas D, Nordqvist A, Karlén A, Larhed M.
    Bioorg Med Chem Lett; 2009 Aug 15; 19(16):4790-3. PubMed ID: 19560924
    [Abstract] [Full Text] [Related]

  • 39. Structure-and-mechanism-based design and discovery of type II Mycobacterium tuberculosis dehydroquinate dehydratase inhibitors.
    Yao Y, Li ZS.
    Curr Top Med Chem; 2014 Aug 15; 14(1):51-63. PubMed ID: 24236726
    [Abstract] [Full Text] [Related]

  • 40. Synthesis and characterization of cytidine derivatives that inhibit the kinase IspE of the non-mevalonate pathway for isoprenoid biosynthesis.
    Crane CM, Hirsch AK, Alphey MS, Sgraja T, Lauw S, Illarionova V, Rohdich F, Eisenreich W, Hunter WN, Bacher A, Diederich F.
    ChemMedChem; 2008 Jan 15; 3(1):91-101. PubMed ID: 18033714
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.