These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 20632327

  • 1. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response.
    Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ.
    Yeast; 2010 Dec; 27(12):983-98. PubMed ID: 20632327
    [Abstract] [Full Text] [Related]

  • 2. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
    Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ.
    Appl Environ Microbiol; 2007 Jul; 73(13):4342-50. PubMed ID: 17496128
    [Abstract] [Full Text] [Related]

  • 3. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source.
    Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, Sepulveda D, Baeza M, Cifuentes V.
    FEMS Yeast Res; 2011 May; 11(3):252-62. PubMed ID: 21205159
    [Abstract] [Full Text] [Related]

  • 4. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae.
    Yamada R, Yamauchi A, Ando Y, Kumata Y, Ogino H.
    Bioresour Technol; 2018 Nov; 268():616-621. PubMed ID: 30138874
    [Abstract] [Full Text] [Related]

  • 5. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media.
    Lange N, Steinbüchel A.
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686
    [Abstract] [Full Text] [Related]

  • 6. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
    Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V.
    PLoS One; 2016 Sep; 11(9):e0162838. PubMed ID: 27622474
    [Abstract] [Full Text] [Related]

  • 7. Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae.
    Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I.
    Yeast; 2000 Dec; 16(16):1469-81. PubMed ID: 11113970
    [Abstract] [Full Text] [Related]

  • 8. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses.
    Mahmud SA, Hirasawa T, Shimizu H.
    J Biosci Bioeng; 2010 Mar; 109(3):262-6. PubMed ID: 20159575
    [Abstract] [Full Text] [Related]

  • 9. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA, Lambrechts MG, Pretorius IS.
    Crit Rev Biochem Mol Biol; 1997 Mar; 32(5):405-35. PubMed ID: 9383611
    [Abstract] [Full Text] [Related]

  • 10. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [Abstract] [Full Text] [Related]

  • 11. The oxidative stress-sensitive yap1 null strain of Saccharomyces cerevisiae becomes resistant due to increased carotenoid levels upon the introduction of the Chlamydomonas reinhardtii cDNA, coding for the 60S ribosomal protein L10a.
    Méndez-Alvarez S, Rüfenacht K, Eggen RI.
    Biochem Biophys Res Commun; 2000 Jan 27; 267(3):953-9. PubMed ID: 10673398
    [Abstract] [Full Text] [Related]

  • 12. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A, del Olmo Ml Ml.
    Yeast; 2003 Jun 27; 20(8):747-59. PubMed ID: 12794936
    [Abstract] [Full Text] [Related]

  • 13. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M, Masaki K, Fujii T, Iefuji H.
    FEMS Yeast Res; 2006 Sep 27; 6(6):924-36. PubMed ID: 16911514
    [Abstract] [Full Text] [Related]

  • 14. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast.
    Kumar A, John L, Alam MM, Gupta A, Sharma G, Pillai B, Sengupta S.
    Biochem J; 2006 May 15; 396(1):61-9. PubMed ID: 16433631
    [Abstract] [Full Text] [Related]

  • 15. Analysis of the genomic response of a wine yeast to rehydration and inoculation.
    Rossignol T, Postaire O, Storaï J, Blondin B.
    Appl Microbiol Biotechnol; 2006 Aug 15; 71(5):699-712. PubMed ID: 16607525
    [Abstract] [Full Text] [Related]

  • 16. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures.
    Boer VM, Daran JM, Almering MJ, de Winde JH, Pronk JT.
    FEMS Yeast Res; 2005 Jul 15; 5(10):885-97. PubMed ID: 15949974
    [Abstract] [Full Text] [Related]

  • 17. Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene.
    Pollmann H, Breitenbach J, Sandmann G.
    J Biotechnol; 2017 Apr 10; 247():34-41. PubMed ID: 28263769
    [Abstract] [Full Text] [Related]

  • 18. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M, Thevelein JM, Van Dijck P.
    Yeast; 2004 Jan 15; 21(1):75-86. PubMed ID: 14745784
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids.
    Liu P, Sun L, Sun Y, Shang F, Yan G.
    J Ind Microbiol Biotechnol; 2016 Apr 15; 43(4):525-35. PubMed ID: 26749524
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.