These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


80 related items for PubMed ID: 2063624

  • 1. Production of the STA2-encoded glucoamylase in Saccharomyces cerevisiae is subject to feed-back control.
    Suntsov NI, Kuchin SV, Neystat MA, Mashko SV, Benevolensky SV.
    Yeast; 1991 Feb; 7(2):119-25. PubMed ID: 2063624
    [Abstract] [Full Text] [Related]

  • 2. [Coregulation of alternative transcripts of the STA2 gene in Saccharomyces cerevisiae].
    Kozlov DG, Surina ER, Efremov BD, Veĭko VP, Benevolenskiĭ SV.
    Genetika; 2002 Oct; 38(10):1324-9. PubMed ID: 12449642
    [Abstract] [Full Text] [Related]

  • 3. Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces.
    Kuchin SV, Kartasheva NN, Benevolensky SV.
    Yeast; 1993 May; 9(5):533-41. PubMed ID: 8322516
    [Abstract] [Full Text] [Related]

  • 4. The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus: an overview.
    Pretorius IS, Lambrechts MG, Marmur J.
    Crit Rev Biochem Mol Biol; 1991 May; 26(1):53-76. PubMed ID: 1873999
    [Abstract] [Full Text] [Related]

  • 5. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS.
    Biotechnol Bioeng; 2003 Dec 20; 84(6):639-46. PubMed ID: 14595776
    [Abstract] [Full Text] [Related]

  • 6. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques.
    Ganzlin M, Rinas U.
    J Biotechnol; 2008 Jun 30; 135(3):266-71. PubMed ID: 18501461
    [Abstract] [Full Text] [Related]

  • 7. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C, Haack MB, Olsson L.
    Appl Microbiol Biotechnol; 2004 Feb 30; 63(5):578-83. PubMed ID: 12925863
    [Abstract] [Full Text] [Related]

  • 8. Expression and secretion of glucoamylase of Aspergillus niger in Saccharomyces cerevisiae.
    Tang G, Gong H, Zhong L, Yang K.
    Chin J Biotechnol; 1994 Feb 30; 10(3):163-8. PubMed ID: 7893936
    [Abstract] [Full Text] [Related]

  • 9. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase.
    Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H.
    Appl Microbiol Biotechnol; 2002 Mar 30; 58(3):291-6. PubMed ID: 11935178
    [Abstract] [Full Text] [Related]

  • 10. Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae.
    Kartasheva NN, Kuchin SV, Benevolensky SV.
    Yeast; 1996 Oct 30; 12(13):1297-300. PubMed ID: 8923734
    [Abstract] [Full Text] [Related]

  • 11. A simple structured model for biomass and extracellular enzyme production with recombinant Saccharomyces cerevisiae YPB-G.
    Birol G, Kirdar B, Onsan ZI.
    J Ind Microbiol Biotechnol; 2002 Sep 30; 29(3):111-6. PubMed ID: 12242631
    [Abstract] [Full Text] [Related]

  • 12. Kinetics of improved extracellular beta-d-fructofuranosidase fructohydrolase production by a derepressed Saccharomyces cerevisiae.
    Ali S, Haq I.
    Lett Appl Microbiol; 2007 Aug 30; 45(2):160-7. PubMed ID: 17651212
    [Abstract] [Full Text] [Related]

  • 13. The Kluyver effect for trehalose in Saccharomyces cerevisiae.
    Malluta EF, Decker P, Stambuk BU.
    J Basic Microbiol; 2000 Aug 30; 40(3):199-205. PubMed ID: 10957961
    [Abstract] [Full Text] [Related]

  • 14. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J, Suárez-Rendueles P.
    Yeast; 1993 Apr 30; 9(4):339-49. PubMed ID: 8511964
    [Abstract] [Full Text] [Related]

  • 15. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP, Mirgorodskaya E, Frandsen TP, Roepstorff P, Svensson B.
    Protein Expr Purif; 1997 Mar 30; 9(2):159-70. PubMed ID: 9056481
    [Abstract] [Full Text] [Related]

  • 16. Integration of glucoamylase gene from Aspergillus niger into Saccharomyces cerevisiae genome and its stable expression.
    Tang G, Yang K.
    Chin J Biotechnol; 1995 Mar 30; 11(4):237-41. PubMed ID: 8739101
    [Abstract] [Full Text] [Related]

  • 17. Transcriptional control of glucoamylase synthesis in vegetatively growing and sporulating Saccharomyces species.
    Pretorius IS, Modena D, Vanoni M, Englard S, Marmur J.
    Mol Cell Biol; 1986 Sep 30; 6(9):3034-41. PubMed ID: 3097516
    [Abstract] [Full Text] [Related]

  • 18. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM, Swift RJ, Wiebe MG, Robson GD, Punt PJ, van den Hondel CA, Trinci AP.
    Biotechnol Bioeng; 1998 Aug 20; 59(4):407-18. PubMed ID: 10099354
    [Abstract] [Full Text] [Related]

  • 19. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM, Gancedo JM.
    Arch Microbiol; 2003 Oct 20; 180(4):293-7. PubMed ID: 12955310
    [Abstract] [Full Text] [Related]

  • 20. Genes involved in the regulation of invertase production in Saccharomyces cerevisiae.
    del Castillo Agudo L, Gozalbo D.
    Microbiologia; 1994 Dec 20; 10(4):385-94. PubMed ID: 7772293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.