These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 20636446

  • 21. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA, Salamonsen RF, Savkin AV, AlOmari AH, Lim E, Lovell NH.
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [Abstract] [Full Text] [Related]

  • 22. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A, Nüsser P, Lampe B.
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [Abstract] [Full Text] [Related]

  • 23. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG, Lanning CJ, Stoica S, Wang R, Rech BA, Goldberg S, Shandas R.
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [Abstract] [Full Text] [Related]

  • 24. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
    Fresiello L, Rademakers F, Claus P, Ferrari G, Di Molfetta A, Meyns B.
    PLoS One; 2017 Jul; 12(7):e0181879. PubMed ID: 28738087
    [Abstract] [Full Text] [Related]

  • 25. A model-free adaptive control to a blood pump based on heart rate.
    Chang Y, Gao B, Gu K.
    ASAIO J; 2011 Jul; 57(4):262-7. PubMed ID: 21502862
    [Abstract] [Full Text] [Related]

  • 26. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M, Plank C, Meissner U, Eberle KP, Weyand M, Cesnjevar R, Dötsch J, Rascher W.
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [Abstract] [Full Text] [Related]

  • 27. Computational analysis of the effect of the control model of intraaorta pump on ventricular unloading and vessel response.
    Gu K, Chang Y, Gao B, Liu Y.
    ASAIO J; 2012 Jul; 58(5):455-61. PubMed ID: 22890166
    [Abstract] [Full Text] [Related]

  • 28. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF, Lim E, Moloney J, Lovell NH, Rosenfeldt FL.
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [Abstract] [Full Text] [Related]

  • 29. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG, Loerakker S, Rutten MC, de Mol BA, van de Vosse FN.
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [Abstract] [Full Text] [Related]

  • 30. Physiology of the native heart and Thermo Cardiosystems left ventricular assist device complex at rest and during exercise: implications for chronic support.
    Branch KR, Dembitsky WP, Peterson KL, Adamson R, Gordon JB, Smith SC, Jaski BE.
    J Heart Lung Transplant; 1994 Aug; 13(4):641-50; discussion 651. PubMed ID: 7947881
    [Abstract] [Full Text] [Related]

  • 31. Cardiovascular simulator improvement: pressure versus volume loop assessment.
    Fonseca J, Andrade A, Nicolosi DE, Biscegli JF, Leme J, Legendre D, Bock E, Lucchi JC.
    Artif Organs; 2011 May; 35(5):454-8. PubMed ID: 21595711
    [Abstract] [Full Text] [Related]

  • 32. Regulation of coronary blood flow during exercise.
    Duncker DJ, Bache RJ.
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [Abstract] [Full Text] [Related]

  • 33. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF, Stevens MC, Gregory SD, Kleinheyer M, Salamonsen RF.
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [Abstract] [Full Text] [Related]

  • 34. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S.
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [Abstract] [Full Text] [Related]

  • 35. Ventricular actuation improves systolic and diastolic myocardial function in the small failing heart.
    Anstadt MP, Budharaju S, Darner RJ, Schmitt BA, Prochaska LJ, Pothoulakis AJ, Portner PM.
    Ann Thorac Surg; 2009 Dec; 88(6):1982-8; discussion 1988. PubMed ID: 19932272
    [Abstract] [Full Text] [Related]

  • 36. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.
    Yokoyama Y, Kawaguchi O, Kitao T, Kimura T, Steinseifer U, Takatani S.
    Artif Organs; 2010 Sep; 34(9):766-77. PubMed ID: 20883395
    [Abstract] [Full Text] [Related]

  • 37. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A, Throckmorton AL, Patel SM, Wood HG, Allaire PE, Olsen DB.
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [Abstract] [Full Text] [Related]

  • 38. Modeling ventricular function during cardiac assist: does time-varying elastance work?
    Vandenberghe S, Segers P, Steendijk P, Meyns B, Dion RA, Antaki JF, Verdonck P.
    ASAIO J; 2006 Jul; 52(1):4-8. PubMed ID: 16436883
    [Abstract] [Full Text] [Related]

  • 39. Alternation of left ventricular load by a continuous-flow left ventricular assist device with a native heart load control system in a chronic heart failure model.
    Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Adachi H, Tatsumi E.
    J Thorac Cardiovasc Surg; 2014 Aug; 148(2):698-704. PubMed ID: 24521976
    [Abstract] [Full Text] [Related]

  • 40. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD, Stevens MC, Pauls JP, Schummy E, Diab S, Thomson B, Anderson B, Tansley G, Salamonsen R, Fraser JF, Timms D.
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.