These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 20637824

  • 1. The in vitro effects of Trolox on methylmercury-induced neurotoxicity.
    Kaur P, Evje L, Aschner M, Syversen T.
    Toxicology; 2010 Sep 30; 276(1):73-8. PubMed ID: 20637824
    [Abstract] [Full Text] [Related]

  • 2. The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity.
    Kaur P, Evje L, Aschner M, Syversen T.
    Toxicol In Vitro; 2009 Apr 30; 23(3):378-85. PubMed ID: 19168124
    [Abstract] [Full Text] [Related]

  • 3. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P, Aschner M, Syversen T.
    Toxicology; 2007 Feb 12; 230(2-3):164-77. PubMed ID: 17169475
    [Abstract] [Full Text] [Related]

  • 4. Methylmercury activates ASK1/JNK signaling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines.
    Usuki F, Fujita E, Sasagawa N.
    Neurotoxicology; 2008 Jan 12; 29(1):22-30. PubMed ID: 17920127
    [Abstract] [Full Text] [Related]

  • 5. The use of fluorescence for detecting MeHg-induced ROS in cell cultures.
    Kaur P, Schulz K, Heggland I, Aschner M, Syversen T.
    Toxicol In Vitro; 2008 Aug 12; 22(5):1392-8. PubMed ID: 18343630
    [Abstract] [Full Text] [Related]

  • 6. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity.
    Mori N, Yasutake A, Hirayama K.
    Arch Toxicol; 2007 Nov 12; 81(11):769-76. PubMed ID: 17464500
    [Abstract] [Full Text] [Related]

  • 7. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G, Syversen T, Aschner JL, Aschner M.
    Brain Res Mol Brain Res; 2005 Jun 13; 137(1-2):11-22. PubMed ID: 15950756
    [Abstract] [Full Text] [Related]

  • 8. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.
    Kaur P, Aschner M, Syversen T.
    Neurotoxicology; 2006 Jul 13; 27(4):492-500. PubMed ID: 16513172
    [Abstract] [Full Text] [Related]

  • 9. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.
    Kaur P, Schulz K, Aschner M, Syversen T.
    Toxicol Sci; 2007 Dec 13; 100(2):423-32. PubMed ID: 17728287
    [Abstract] [Full Text] [Related]

  • 10. Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction.
    Xu B, Xu ZF, Deng Y, Liu W, Yang HB, Wei YG.
    Toxicology; 2012 Oct 28; 300(3):112-20. PubMed ID: 22722016
    [Abstract] [Full Text] [Related]

  • 11. Glutathione-mediated neuroprotection against methylmercury neurotoxicity in cortical culture is dependent on MRP1.
    Rush T, Liu X, Nowakowski AB, Petering DH, Lobner D.
    Neurotoxicology; 2012 Jun 28; 33(3):476-81. PubMed ID: 22464990
    [Abstract] [Full Text] [Related]

  • 12. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells.
    Heggland I, Kaur P, Syversen T.
    Toxicol In Vitro; 2009 Sep 28; 23(6):1020-7. PubMed ID: 19540910
    [Abstract] [Full Text] [Related]

  • 13. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices.
    Wagner C, Vargas AP, Roos DH, Morel AF, Farina M, Nogueira CW, Aschner M, Rocha JB.
    Arch Toxicol; 2010 Feb 28; 84(2):89-97. PubMed ID: 19902180
    [Abstract] [Full Text] [Related]

  • 14. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G, Aschner JL, Syversen T, Aschner M.
    Brain Res Mol Brain Res; 2004 Sep 10; 128(1):48-57. PubMed ID: 15337317
    [Abstract] [Full Text] [Related]

  • 15. The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells.
    Ou YC, White CC, Krejsa CM, Ponce RA, Kavanagh TJ, Faustman EM.
    Neurotoxicology; 1999 Oct 10; 20(5):793-804. PubMed ID: 10591515
    [Abstract] [Full Text] [Related]

  • 16. Protection of pyrroloquinoline quinone against methylmercury-induced neurotoxicity via reducing oxidative stress.
    Zhang P, Xu Y, Sun J, Li X, Wang L, Jin L.
    Free Radic Res; 2009 Mar 10; 43(3):224-33. PubMed ID: 19191107
    [Abstract] [Full Text] [Related]

  • 17. Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants.
    Shanker G, Aschner M.
    Brain Res Mol Brain Res; 2003 Jan 31; 110(1):85-91. PubMed ID: 12573536
    [Abstract] [Full Text] [Related]

  • 18. Time course assessment of methylmercury effects on C6 glioma cells: submicromolar concentrations induce oxidative DNA damage and apoptosis.
    Belletti S, Orlandini G, Vettori MV, Mutti A, Uggeri J, Scandroglio R, Alinovi R, Gatti R.
    J Neurosci Res; 2002 Dec 01; 70(5):703-11. PubMed ID: 12424738
    [Abstract] [Full Text] [Related]

  • 19. Vitamin K has the potential to protect neurons from methylmercury-induced cell death in vitro.
    Sakaue M, Mori N, Okazaki M, Kadowaki E, Kaneko T, Hemmi N, Sekiguchi H, Maki T, Ozawa A, Hara S, Arishima K, Yamamoto M.
    J Neurosci Res; 2011 Jul 01; 89(7):1052-8. PubMed ID: 21488088
    [Abstract] [Full Text] [Related]

  • 20. Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice.
    Farina M, Franco JL, Ribas CM, Meotti FC, Missau FC, Pizzolatti MG, Dafre AL, Santos AR.
    J Pharm Pharmacol; 2005 Nov 01; 57(11):1503-8. PubMed ID: 16259784
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.