These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
698 related items for PubMed ID: 20642740
1. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. Plant Biotechnol J; 2011 Feb; 9(2):230-49. PubMed ID: 20642740 [Abstract] [Full Text] [Related]
2. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, Beck-Oldach K, Shavrukov Y, Langridge P, Lopato S. Plant Biotechnol J; 2013 Aug; 11(6):659-70. PubMed ID: 23495849 [Abstract] [Full Text] [Related]
3. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield. Yang Y, Al-Baidhani HHJ, Harris J, Riboni M, Li Y, Mazonka I, Bazanova N, Chirkova L, Sarfraz Hussain S, Hrmova M, Haefele S, Lopato S, Kovalchuk N. Plant Biotechnol J; 2020 Mar; 18(3):829-844. PubMed ID: 31487424 [Abstract] [Full Text] [Related]
4. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang N, Eliby S, Langridge P, Hrmova M, Lopato S. Plant Biotechnol J; 2016 Feb; 14(2):820-32. PubMed ID: 26150199 [Abstract] [Full Text] [Related]
5. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Kobayashi F, Maeta E, Terashima A, Takumi S. Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415 [Abstract] [Full Text] [Related]
6. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C, Zhang F, Chen X. Physiol Plant; 2012 Mar; 144(3):210-24. PubMed ID: 22082019 [Abstract] [Full Text] [Related]
7. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Shavrukov Y, Baho M, Lopato S, Langridge P. Plant Biotechnol J; 2016 Jan; 14(1):313-22. PubMed ID: 25940960 [Abstract] [Full Text] [Related]
8. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. Plant Biotechnol J; 2014 May; 12(4):468-79. PubMed ID: 24393105 [Abstract] [Full Text] [Related]
9. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S. J Exp Bot; 2008 May; 59(4):891-905. PubMed ID: 18326864 [Abstract] [Full Text] [Related]
10. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY. Plant Cell Environ; 2012 Jun; 35(6):1156-70. PubMed ID: 22220579 [Abstract] [Full Text] [Related]
11. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Wang JW, Yang FP, Chen XQ, Liang RQ, Zhang LQ, Geng DM, Zhang XD, Song YZ, Zhang GS. Yi Chuan Xue Bao; 2006 May; 33(5):468-76. PubMed ID: 16722342 [Abstract] [Full Text] [Related]
12. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R. Plant Biotechnol J; 2010 May 01; 8(4):476-88. PubMed ID: 20233336 [Abstract] [Full Text] [Related]
13. Drought and salt tolerances in wild relatives for wheat and barley improvement. Nevo E, Chen G. Plant Cell Environ; 2010 Apr 01; 33(4):670-85. PubMed ID: 20040064 [Abstract] [Full Text] [Related]
14. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Cai H, Tian S, Liu C, Dong H. Gene; 2011 Oct 10; 485(2):146-52. PubMed ID: 21763408 [Abstract] [Full Text] [Related]
15. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Wang L, Li X, Chen S, Liu G. Biotechnol Lett; 2009 Feb 10; 31(2):313-9. PubMed ID: 18936880 [Abstract] [Full Text] [Related]
16. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Plant Cell Physiol; 2006 Jan 10; 47(1):141-53. PubMed ID: 16284406 [Abstract] [Full Text] [Related]
17. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Chen J, Xia X, Yin W. Biochem Biophys Res Commun; 2009 Jan 16; 378(3):483-7. PubMed ID: 19032934 [Abstract] [Full Text] [Related]
18. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Wei A, He C, Li B, Li N, Zhang J. Plant Biotechnol J; 2011 Feb 16; 9(2):216-29. PubMed ID: 20633239 [Abstract] [Full Text] [Related]
19. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K. Plant J; 2007 Apr 16; 50(1):54-69. PubMed ID: 17346263 [Abstract] [Full Text] [Related]
20. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Chauhan H, Khurana P. Plant Biotechnol J; 2011 Apr 16; 9(3):408-17. PubMed ID: 20723133 [Abstract] [Full Text] [Related] Page: [Next] [New Search]