These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 20643152
1. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary. Ye T, Li H, Lam KY. Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152 [Abstract] [Full Text] [Related]
2. Measurement of RBC deformation and velocity in capillaries in vivo. Jeong JH, Sugii Y, Minamiyama M, Okamoto K. Microvasc Res; 2006 May; 71(3):212-7. PubMed ID: 16624342 [Abstract] [Full Text] [Related]
3. The deformation behavior of multiple red blood cells in a capillary vessel. Gong X, Sugiyama K, Takagi S, Matsumoto Y. J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140 [Abstract] [Full Text] [Related]
4. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER. Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411 [Abstract] [Full Text] [Related]
5. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods. Huang TC, Lin WC, Wu CC, Zhang G, Lin KP. Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483 [Abstract] [Full Text] [Related]
9. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow. Hashemi Z, Rahnama M. Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644 [Abstract] [Full Text] [Related]
10. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Polwaththe-Gallage HN, Saha SC, Sauret E, Flower R, Senadeera W, Gu Y. Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):161. PubMed ID: 28155717 [Abstract] [Full Text] [Related]
11. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Faivre M, Abkarian M, Bickraj K, Stone HA. Biorheology; 2006 Dec 28; 43(2):147-59. PubMed ID: 16687784 [Abstract] [Full Text] [Related]
12. Numerical simulation of blood flow through microvascular capillary networks. Pozrikidis C. Bull Math Biol; 2009 Aug 28; 71(6):1520-41. PubMed ID: 19267162 [Abstract] [Full Text] [Related]
14. Computational analysis of dynamic interaction of two red blood cells in a capillary. Li H, Ye T, Lam KY. Cell Biochem Biophys; 2014 Jul 15; 69(3):673-80. PubMed ID: 24590262 [Abstract] [Full Text] [Related]
15. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K, Wada S, Liu H. Biomech Model Mechanobiol; 2014 Aug 15; 13(4):735-46. PubMed ID: 24104211 [Abstract] [Full Text] [Related]
16. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA. IEEE Trans Biomed Eng; 2003 Jan 15; 50(1):97-106. PubMed ID: 12617529 [Abstract] [Full Text] [Related]
18. Mechanical behavior of the erythrocyte in microvessel stenosis. Zhang Z, Zhang X. Sci China Life Sci; 2011 May 15; 54(5):450-8. PubMed ID: 21416230 [Abstract] [Full Text] [Related]
19. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method. Vahidkhah K, Fatouraee N. Int J Numer Method Biomed Eng; 2012 Feb 15; 28(2):239-56. PubMed ID: 25099328 [Abstract] [Full Text] [Related]
20. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores. Fisher TC, Van Der Waart FJ, Meiselman HJ. Biorheology; 1996 Feb 15; 33(2):153-68. PubMed ID: 8679962 [Abstract] [Full Text] [Related] Page: [Next] [New Search]