These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 20647323

  • 1. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma.
    Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H.
    Cancer Res; 2010 Aug 01; 70(15):6303-12. PubMed ID: 20647323
    [Abstract] [Full Text] [Related]

  • 2. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles.
    Bouras A, Kaluzova M, Hadjipanayis CG.
    J Neurooncol; 2015 Aug 01; 124(1):13-22. PubMed ID: 25981803
    [Abstract] [Full Text] [Related]

  • 3. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles.
    Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG.
    Oncotarget; 2015 Apr 20; 6(11):8788-806. PubMed ID: 25871395
    [Abstract] [Full Text] [Related]

  • 4. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model.
    Stephen ZR, Chiarelli PA, Revia RA, Wang K, Kievit F, Dayringer C, Jeon M, Ellenbogen R, Zhang M.
    Cancer Res; 2019 Sep 15; 79(18):4776-4786. PubMed ID: 31331912
    [Abstract] [Full Text] [Related]

  • 5. AMG 595, an Anti-EGFRvIII Antibody-Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing Glioblastoma.
    Hamblett KJ, Kozlosky CJ, Siu S, Chang WS, Liu H, Foltz IN, Trueblood ES, Meininger D, Arora T, Twomey B, Vonderfecht SL, Chen Q, Hill JS, Fanslow WC.
    Mol Cancer Ther; 2015 Jul 15; 14(7):1614-24. PubMed ID: 25931519
    [Abstract] [Full Text] [Related]

  • 6. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects.
    van de Water JA, Bagci-Onder T, Agarwal AS, Wakimoto H, Roovers RC, Zhu Y, Kasmieh R, Bhere D, Van Bergen en Henegouwen PM, Shah K.
    Proc Natl Acad Sci U S A; 2012 Oct 09; 109(41):16642-7. PubMed ID: 23012408
    [Abstract] [Full Text] [Related]

  • 7. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma.
    Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, Ramasawmy R, Williams IP, Siow BM, Lythgoe MF, Kalber TL, Quezada SA, Pule MA, Tugues S, Straathof K, Becher B.
    Nat Commun; 2021 Jan 19; 12(1):444. PubMed ID: 33469002
    [Abstract] [Full Text] [Related]

  • 8. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy.
    Chandramohan V, Bao X, Keir ST, Pegram CN, Szafranski SE, Piao H, Wikstrand CJ, McLendon RE, Kuan CT, Pastan IH, Bigner DD.
    Clin Cancer Res; 2013 Sep 01; 19(17):4717-27. PubMed ID: 23857604
    [Abstract] [Full Text] [Related]

  • 9. Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2-targeted photoacoustic tumor imaging.
    Kanazaki K, Sano K, Makino A, Shimizu Y, Yamauchi F, Ogawa S, Ding N, Yano T, Temma T, Ono M, Saji H.
    Nanomedicine; 2015 Nov 01; 11(8):2051-60. PubMed ID: 26238078
    [Abstract] [Full Text] [Related]

  • 10. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.
    Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G, Sayour EJ, McLendon R, Herndon JE, Healy P, Archer GE, Bigner DD, Johnson LA, Sampson JH.
    PLoS One; 2014 Nov 01; 9(4):e94281. PubMed ID: 24722266
    [Abstract] [Full Text] [Related]

  • 11. Bystander Effects, Pharmacokinetics, and Linker-Payload Stability of EGFR-Targeting Antibody-Drug Conjugates Losatuxizumab Vedotin and Depatux-M in Glioblastoma Models.
    Jain S, Griffith JI, Porath KA, Rathi S, Le J, Pasa TI, Decker PA, Gupta SK, Hu Z, Carlson BL, Bakken K, Burgenske DM, Feldsien TM, Lefebvre DR, Vaubel RA, Eckel-Passow JE, Reilly EB, Elmquist WF, Sarkaria JN.
    Clin Cancer Res; 2024 Aug 01; 30(15):3287-3297. PubMed ID: 38743766
    [Abstract] [Full Text] [Related]

  • 12. Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts.
    Liu X, Dong C, Shi J, Ma T, Jin Z, Jia B, Liu Z, Shen L, Wang F.
    Oncotarget; 2017 Jan 24; 8(4):6364-6375. PubMed ID: 28031526
    [Abstract] [Full Text] [Related]

  • 13. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma.
    Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ, Kang S, Spretz R, Welp U, Noriega SE, Nunez L, Larsen GF, Weichselbaum RR, Yamini B.
    Nanomedicine; 2014 Jan 24; 10(1):149-57. PubMed ID: 23891990
    [Abstract] [Full Text] [Related]

  • 14. An EGFRvIII targeted dual-modal gold nanoprobe for imaging-guided brain tumor surgery.
    Yue Q, Gao X, Yu Y, Li Y, Hua W, Fan K, Zhang R, Qian J, Chen L, Li C, Mao Y.
    Nanoscale; 2017 Jun 14; 9(23):7930-7940. PubMed ID: 28569328
    [Abstract] [Full Text] [Related]

  • 15. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors.
    Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M.
    ACS Nano; 2014 Oct 28; 8(10):10383-95. PubMed ID: 25247850
    [Abstract] [Full Text] [Related]

  • 16. Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models.
    Keir ST, Chandramohan V, Hemphill CD, Grandal MM, Melander MC, Pedersen MW, Horak ID, Kragh M, Desjardins A, Friedman HS, Bigner DD.
    J Neurooncol; 2018 Jul 28; 138(3):489-498. PubMed ID: 29564747
    [Abstract] [Full Text] [Related]

  • 17. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.
    Chen H, Wang L, Yu Q, Qian W, Tiwari D, Yi H, Wang AY, Huang J, Yang L, Mao H.
    Int J Nanomedicine; 2013 Jul 28; 8():3781-94. PubMed ID: 24124366
    [Abstract] [Full Text] [Related]

  • 18. Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles.
    Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, Wang J, Chen H, Ma Y, Li Z, Wang C, Qi Q, Thorsen F, Wang J, Cui J, Li X, Ni S.
    ACS Appl Mater Interfaces; 2020 Sep 30; 12(39):43408-43421. PubMed ID: 32885649
    [Abstract] [Full Text] [Related]

  • 19. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.
    Ding N, Sano K, Kanazaki K, Ohashi M, Deguchi J, Kanada Y, Ono M, Saji H.
    Mol Imaging Biol; 2016 Dec 30; 18(6):870-876. PubMed ID: 27351762
    [Abstract] [Full Text] [Related]

  • 20. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles.
    Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW.
    Sci Rep; 2020 Jul 09; 10(1):11292. PubMed ID: 32647151
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.