These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 20647628
1. Estimation of frequency-dependent electrokinetic forces on tin oxide nanobelts in low frequency electric fields. Kumar S, Hesketh PJ. Nanotechnology; 2010 Aug 13; 21(32):325501. PubMed ID: 20647628 [Abstract] [Full Text] [Related]
2. Ac dielectrophoresis of tin oxide nanobelts suspended in ethanol: manipulation and visualization. Kumar S, Peng Z, Shin H, Wang ZL, Hesketh PJ. Anal Chem; 2010 Mar 15; 82(6):2204-12. PubMed ID: 20151680 [Abstract] [Full Text] [Related]
3. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes. Park S, Beskok A. Anal Chem; 2008 Apr 15; 80(8):2832-41. PubMed ID: 18318510 [Abstract] [Full Text] [Related]
4. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP. Electrophoresis; 2009 Mar 15; 30(5):782-91. PubMed ID: 19197906 [Abstract] [Full Text] [Related]
5. Dielectrophoretic levitation in the presence of shear flow: implications for colloidal fouling of filtration membranes. Molla S, Bhattacharjee S. Langmuir; 2007 Oct 09; 23(21):10618-27. PubMed ID: 17867710 [Abstract] [Full Text] [Related]
6. Cell motion model for moving dielectrophoresis. Kua CH, Lam YC, Rodriguez I, Yang C, Youcef-Toumi K. Anal Chem; 2008 Jul 15; 80(14):5454-61. PubMed ID: 18558772 [Abstract] [Full Text] [Related]
7. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Fan SK, Huang PW, Wang TT, Peng YH. Lab Chip; 2008 Aug 15; 8(8):1325-31. PubMed ID: 18651075 [Abstract] [Full Text] [Related]
8. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields. Zhu J, Xuan X. Electrophoresis; 2009 Aug 15; 30(15):2668-75. PubMed ID: 19621378 [Abstract] [Full Text] [Related]
9. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions. Liu W, Shao J, Jia Y, Tao Y, Ding Y, Jiang H, Ren Y. Soft Matter; 2015 Nov 07; 11(41):8105-12. PubMed ID: 26332897 [Abstract] [Full Text] [Related]
10. 2-Dimensional MEMS dielectrophoresis device for osteoblast cell stimulation. Zou H, Mellon S, Syms RR, Tanner KE. Biomed Microdevices; 2006 Dec 07; 8(4):353-9. PubMed ID: 16917662 [Abstract] [Full Text] [Related]
11. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. Calero V, García-Sánchez P, Ramos A, Morgan H. J Chromatogr A; 2020 Jul 19; 1623():461151. PubMed ID: 32505271 [Abstract] [Full Text] [Related]
19. Induced dielectric-force-effect by 50 Hz strong electric field on living tissue. Comlekci S. Biomed Mater Eng; 2006 Aug 19; 16(6):363-7. PubMed ID: 17119275 [Abstract] [Full Text] [Related]
20. Directed assembly of Janus particles under high frequency ac-electric fields: effects of medium conductivity and colloidal surface chemistry. Zhang L, Zhu Y. Langmuir; 2012 Sep 18; 28(37):13201-7. PubMed ID: 22924894 [Abstract] [Full Text] [Related] Page: [Next] [New Search]