These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 20657918

  • 1. Vapor-liquid-solid growth of silicon nanowires using organosilane as precursor.
    Yang HJ, Yuan FW, Tuan HY.
    Chem Commun (Camb); 2010 Sep 07; 46(33):6105-7. PubMed ID: 20657918
    [Abstract] [Full Text] [Related]

  • 2. Orientation specific synthesis of kinked silicon nanowires grown by the vapour-liquid-solid mechanism.
    Hyun YJ, Lugstein A, Steinmair M, Bertagnolli E, Pongratz P.
    Nanotechnology; 2009 Mar 25; 20(12):125606. PubMed ID: 19420475
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties.
    Chang MT, Chou LJ, Chueh YL, Lee YC, Hsieh CH, Chen CD, Lan YW, Chen LJ.
    Small; 2007 Apr 25; 3(4):658-64. PubMed ID: 17315263
    [Abstract] [Full Text] [Related]

  • 4. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.
    Poinern GE, Ng YJ, Fawcett D.
    J Colloid Interface Sci; 2010 Dec 15; 352(2):259-64. PubMed ID: 20887996
    [Abstract] [Full Text] [Related]

  • 5. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y, Fonash SJ.
    ACS Nano; 2008 Mar 15; 2(3):429-34. PubMed ID: 19206566
    [Abstract] [Full Text] [Related]

  • 6. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW, Likovich EM, Russell KJ, Narayanamurti V.
    Nanotechnology; 2009 Oct 07; 20(40):405603. PubMed ID: 19738315
    [Abstract] [Full Text] [Related]

  • 7. Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor.
    Remolina A, Monroy BM, García-Sánchez MF, Ponce A, Bizarro M, Alonso JC, Ortiz A, Santana G.
    Nanotechnology; 2009 Jun 17; 20(24):245604. PubMed ID: 19471076
    [Abstract] [Full Text] [Related]

  • 8. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN, Schneider AS, Schütz G, Xu C, Richter G, van Aken PA, Majer G, Spatz JP.
    ACS Nano; 2010 Apr 27; 4(4):1805-12. PubMed ID: 20218667
    [Abstract] [Full Text] [Related]

  • 9. Gold-catalyzed vapor-liquid-solid germanium-nanowire nucleation on porous silicon.
    Koto M, Marshall AF, Goldthorpe IA, McIntyre PC.
    Small; 2010 May 07; 6(9):1032-7. PubMed ID: 20411571
    [Abstract] [Full Text] [Related]

  • 10. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA, Scholz R, Syrowatka F, Falk F, Gösele U, Christiansen SH.
    Nanotechnology; 2009 Oct 07; 20(40):405607. PubMed ID: 19738306
    [Abstract] [Full Text] [Related]

  • 11. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.
    Mølhave K, Wacaser BA, Petersen DH, Wagner JB, Samuelson L, Bøggild P.
    Small; 2008 Oct 07; 4(10):1741-6. PubMed ID: 18819133
    [Abstract] [Full Text] [Related]

  • 12. Epitaxial growth of silicon nanowires using an aluminium catalyst.
    Wang Y, Schmidt V, Senz S, Gösele U.
    Nat Nanotechnol; 2006 Dec 07; 1(3):186-9. PubMed ID: 18654184
    [Abstract] [Full Text] [Related]

  • 13. Aligned single-crystalline Si nanowire arrays for photovoltaic applications.
    Peng K, Xu Y, Wu Y, Yan Y, Lee ST, Zhu J.
    Small; 2005 Nov 07; 1(11):1062-7. PubMed ID: 17193395
    [No Abstract] [Full Text] [Related]

  • 14. The morphology of silicon nanowires grown in the presence of trimethylaluminium.
    Oehler F, Gentile P, Baron T, Hertog MD, Rouvière J, Ferret P.
    Nanotechnology; 2009 Jun 17; 20(24):245602. PubMed ID: 19471089
    [Abstract] [Full Text] [Related]

  • 15. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S, Tian M, Wang J, Xu J, Redwing JM, Chan MH.
    Small; 2005 Dec 17; 1(12):1221-9. PubMed ID: 17193423
    [Abstract] [Full Text] [Related]

  • 16. Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition.
    Park WI, Lee CH, Chae JH, Lee DH, Yi GC.
    Small; 2009 Feb 17; 5(2):181-4. PubMed ID: 19107888
    [No Abstract] [Full Text] [Related]

  • 17. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY, Reuter MC, Tersoff J, Stach EA, Ross FM.
    Nano Lett; 2010 Feb 10; 10(2):514-9. PubMed ID: 20041666
    [Abstract] [Full Text] [Related]

  • 18. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J, Jiang Y, Meng X, Lee CS, Lee ST.
    Small; 2005 Apr 10; 1(4):429-38. PubMed ID: 17193468
    [Abstract] [Full Text] [Related]

  • 19. High-quality ZnO nanowire arrays directly fabricated from photoresists.
    Cheng C, Lei M, Feng L, Wong TL, Ho KM, Fung KK, Loy MM, Yu D, Wang N.
    ACS Nano; 2009 Jan 27; 3(1):53-8. PubMed ID: 19206248
    [Abstract] [Full Text] [Related]

  • 20. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S, Kim CO, Shin DH, Hong SH, Kim MC, Kim J, Choi SH, Kim T, Elliman RG, Kim YM.
    Nanotechnology; 2010 May 21; 21(20):205601. PubMed ID: 20413841
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.