These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 20664070

  • 1. Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells.
    Souvannakitti D, Kuri B, Yuan G, Pawar A, Kumar GK, Smith C, Fox AP, Prabhakar NR.
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C381-8. PubMed ID: 20664070
    [Abstract] [Full Text] [Related]

  • 2. Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells.
    Souvannakitti D, Kumar GK, Fox A, Prabhakar NR.
    J Neurophysiol; 2009 Jun; 101(6):2837-46. PubMed ID: 19339466
    [Abstract] [Full Text] [Related]

  • 3. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia.
    Makarenko VV, Peng YJ, Khan SA, Nanduri J, Fox AP, Prabhakar NR.
    J Neurophysiol; 2019 Nov 01; 122(5):1874-1883. PubMed ID: 31483699
    [Abstract] [Full Text] [Related]

  • 4. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells.
    Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR.
    J Neurosci; 2010 Aug 11; 30(32):10763-72. PubMed ID: 20705601
    [Abstract] [Full Text] [Related]

  • 5. Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells.
    Souvannakitti D, Kumar GK, Fox A, Prabhakar NR.
    Adv Exp Med Biol; 2009 Aug 11; 648():345-9. PubMed ID: 19536498
    [Abstract] [Full Text] [Related]

  • 6. Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha.
    Buttigieg J, Brown S, Holloway AC, Nurse CA.
    J Neurosci; 2009 Jun 03; 29(22):7137-47. PubMed ID: 19494136
    [Abstract] [Full Text] [Related]

  • 7. Chronic nicotine in utero selectively suppresses hypoxic sensitivity in neonatal rat adrenal chromaffin cells.
    Buttigieg J, Brown S, Zhang M, Lowe M, Holloway AC, Nurse CA.
    FASEB J; 2008 May 03; 22(5):1317-26. PubMed ID: 18070822
    [Abstract] [Full Text] [Related]

  • 8. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells.
    Gridina A, Su X, Khan SA, Peng YJ, Wang B, Nanduri J, Fox AP, Prabhakar NR.
    J Neurophysiol; 2021 May 01; 125(5):1533-1542. PubMed ID: 33729866
    [Abstract] [Full Text] [Related]

  • 9. Regulation of oxygen sensitivity in adrenal chromaffin cells.
    Nurse CA, Buttigieg J, Brown S, Holloway AC.
    Ann N Y Acad Sci; 2009 Oct 01; 1177():132-9. PubMed ID: 19845615
    [Abstract] [Full Text] [Related]

  • 10. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells.
    Kawahata I, Yamakuni T.
    Toxicology; 2018 Feb 01; 394():84-92. PubMed ID: 29246838
    [Abstract] [Full Text] [Related]

  • 11. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress.
    Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D, Prabhakar NR.
    J Physiol; 2006 Aug 15; 575(Pt 1):229-39. PubMed ID: 16777938
    [Abstract] [Full Text] [Related]

  • 12. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms.
    Nanduri J, Prabhakar NR.
    Respir Physiol Neurobiol; 2013 Jan 01; 185(1):105-9. PubMed ID: 22846496
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists.
    Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM.
    J Neurochem; 2020 Jul 01; 154(2):158-176. PubMed ID: 31967330
    [Abstract] [Full Text] [Related]

  • 16. Hypoxia-regulated catecholamine secretion in chromaffin cells.
    Nurse CA, Salman S, Scott AL.
    Cell Tissue Res; 2018 May 01; 372(2):433-441. PubMed ID: 29052004
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice.
    Thompson RJ, Farragher SM, Cutz E, Nurse CA.
    Pflugers Arch; 2002 Jul 01; 444(4):539-48. PubMed ID: 12136274
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C.
    Kuri BA, Khan SA, Chan SA, Prabhakar NR, Smith CB.
    J Physiol; 2007 Oct 01; 584(Pt 1):313-9. PubMed ID: 17702812
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.