These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


526 related items for PubMed ID: 20666375

  • 21. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA, Vattulainen I.
    J Phys Chem B; 2008 Feb 21; 112(7):1953-62. PubMed ID: 18225878
    [Abstract] [Full Text] [Related]

  • 22. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N, Monticelli L, Barnoud J, Tieleman DP.
    Chem Phys Lipids; 2013 Apr 21; 169():95-105. PubMed ID: 23415670
    [Abstract] [Full Text] [Related]

  • 23. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides.
    Papo N, Shai Y.
    Biochemistry; 2004 Jun 01; 43(21):6393-403. PubMed ID: 15157073
    [Abstract] [Full Text] [Related]

  • 24. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R, Pownall HJ.
    Biochim Biophys Acta; 1988 Feb 18; 938(2):155-66. PubMed ID: 3342229
    [Abstract] [Full Text] [Related]

  • 25. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC, Hughes E, Middleton DA.
    Biochemistry; 2005 Dec 27; 44(51):17016-26. PubMed ID: 16363815
    [Abstract] [Full Text] [Related]

  • 26. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST, Castanho MA.
    Biochemistry; 2004 Aug 03; 43(30):9716-24. PubMed ID: 15274626
    [Abstract] [Full Text] [Related]

  • 27. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A, Almeida PF.
    Biochemistry; 2004 Jul 13; 43(27):8846-57. PubMed ID: 15236593
    [Abstract] [Full Text] [Related]

  • 28. Role of phosphatidylglycerols in the stability of bacterial membranes.
    Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M.
    Biochimie; 2008 Jun 13; 90(6):930-8. PubMed ID: 18373983
    [Abstract] [Full Text] [Related]

  • 29. Lipid flip-flop driven mechanical and morphological changes in model membranes.
    Ramachandran S, Kumar PB, Laradji M.
    J Chem Phys; 2008 Sep 28; 129(12):125104. PubMed ID: 19045065
    [Abstract] [Full Text] [Related]

  • 30. Flip-flop is the rate-limiting step for transport of free fatty acids across lipid vesicle membranes.
    Carley AN, Kleinfeld AM.
    Biochemistry; 2009 Nov 03; 48(43):10437-45. PubMed ID: 19777995
    [Abstract] [Full Text] [Related]

  • 31. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y, Xiang TX, Anderson BD.
    Mol Pharm; 2008 Nov 03; 5(3):371-88. PubMed ID: 18355031
    [Abstract] [Full Text] [Related]

  • 32. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J, Zhao C, Liang G, Zhang M, Zheng J.
    J Chem Inf Model; 2013 Dec 23; 53(12):3280-96. PubMed ID: 24279498
    [Abstract] [Full Text] [Related]

  • 33. Structural properties of model phosphatidylcholine flippases.
    Langer M, Sah R, Veser A, Gütlich M, Langosch D.
    Chem Biol; 2013 Jan 24; 20(1):63-72. PubMed ID: 23352140
    [Abstract] [Full Text] [Related]

  • 34. Molecular mechanism for lipid flip-flops.
    Gurtovenko AA, Vattulainen I.
    J Phys Chem B; 2007 Dec 06; 111(48):13554-9. PubMed ID: 17988118
    [Abstract] [Full Text] [Related]

  • 35. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop).
    LeBarron J, London E.
    Biochim Biophys Acta; 2016 Aug 06; 1858(8):1812-20. PubMed ID: 27131444
    [Abstract] [Full Text] [Related]

  • 36. Cholesterol Flip-Flop in Heterogeneous Membranes.
    Gu RX, Baoukina S, Tieleman DP.
    J Chem Theory Comput; 2019 Mar 12; 15(3):2064-2070. PubMed ID: 30633868
    [Abstract] [Full Text] [Related]

  • 37. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes.
    Zhang YP, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2001 Jan 16; 40(2):474-82. PubMed ID: 11148042
    [Abstract] [Full Text] [Related]

  • 38. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe RE, Greathouse DV.
    Biochemistry; 1996 Jan 23; 35(3):1037-45. PubMed ID: 8547239
    [Abstract] [Full Text] [Related]

  • 39. Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine.
    Brown KL, Conboy JC.
    J Phys Chem B; 2013 Dec 05; 117(48):15041-50. PubMed ID: 24200035
    [Abstract] [Full Text] [Related]

  • 40. Resolving the kinetics of lipid, protein and peptide diffusion in membranes.
    Sanderson JM.
    Mol Membr Biol; 2012 Aug 05; 29(5):118-43. PubMed ID: 22582994
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.