These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 2066802
1. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S. J Nucl Med; 1991 Jul; 32(7):1432-8. PubMed ID: 2066802 [Abstract] [Full Text] [Related]
2. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. Schmidt K, Lucignani G, Moresco RM, Rizzo G, Gilardi MC, Messa C, Colombo F, Fazio F, Sokoloff L. J Cereb Blood Flow Metab; 1992 Sep; 12(5):823-34. PubMed ID: 1506447 [Abstract] [Full Text] [Related]
3. [Noninvasive and simple method for the estimation of myocardial metabolic rate of glucose by PET and 18F-FDG]. Takahashi N, Tamaki N, Kawamoto M, Magata Y, Okuda K, Nohara R, Sasayama S, Yonekura Y, Konishi J, Yamamoto K. Kaku Igaku; 1994 Aug; 31(8):985-90. PubMed ID: 7933687 [Abstract] [Full Text] [Related]
4. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME. J Nucl Med; 1989 Mar; 30(3):359-66. PubMed ID: 2786939 [Abstract] [Full Text] [Related]
5. [Regional cerebral glucose metabolism associated with ataxic gait--an FDG-PET activation study in patients with olivopontocerebellar atrophy]. Mishina M, Senda M, Ohyama M, Ishii K, Kitamura S, Terashi A. Rinsho Shinkeigaku; 1995 Nov; 35(11):1199-204. PubMed ID: 8720328 [Abstract] [Full Text] [Related]
6. [Hemocirculation and metabolism in intraventricular tumors: kinetic analysis of glucose metabolism]. Shioya H, Mineura K, Kowada M, Iida H, Murakami M, Ogawa T, Hatazawa J, Uemura K. No Shinkei Geka; 1996 Mar; 24(3):211-9. PubMed ID: 8851949 [Abstract] [Full Text] [Related]
7. An alternative method to normalize clinical FDG studies. Sandell A, Ohlsson T, Erlandsson K, Strand SE. J Nucl Med; 1998 Mar; 39(3):552-5. PubMed ID: 9529310 [Abstract] [Full Text] [Related]
8. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. Fang YH, Muzic RF. J Nucl Med; 2008 Apr; 49(4):606-14. PubMed ID: 18344438 [Abstract] [Full Text] [Related]
13. Measurements of glucose phosphorylation with FDG and PET are not reduced by dephosphorylation of FDG-6-phosphate. Kuwabara H, Gjedde A. J Nucl Med; 1991 Apr; 32(4):692-8. PubMed ID: 2013809 [Abstract] [Full Text] [Related]
14. [Evaluation of myocardial glucose utilization of hypertrophic and dilated cardiomyopathy using 18F-2-fluoro 2-deoxy-D-glucose and positron emission tomography]. Ohtake T, Kosaka N, Watanabe T, Momose T, Nishikawa J, Sasaki Y, Iio M, Yokoyama I, Iizuka M, Sugimoto T. Nihon Rinsho; 1991 Jan; 49(1):143-7. PubMed ID: 2002593 [No Abstract] [Full Text] [Related]
16. Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arterial blood sampling. Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Nucl Med Commun; 2005 Jan; 26(1):31-7. PubMed ID: 15604945 [Abstract] [Full Text] [Related]