These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 20669241
1. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Stamp AL, Owen P, El Omari K, Nichols CE, Lockyer M, Lamb HK, Charles IG, Hawkins AR, Stammers DK. Protein Sci; 2010 Oct; 19(10):1897-905. PubMed ID: 20669241 [Abstract] [Full Text] [Related]
2. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity. Campos-Bermudez VA, Leite NR, Krog R, Costa-Filho AJ, Soncini FC, Oliva G, Vila AJ. Biochemistry; 2007 Oct 02; 46(39):11069-79. PubMed ID: 17764159 [Abstract] [Full Text] [Related]
3. Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2. Limphong P, Crowder MW, Bennett B, Makaroff CA. Biochem J; 2009 Jan 01; 417(1):323-30. PubMed ID: 18782082 [Abstract] [Full Text] [Related]
4. Structural studies on a mitochondrial glyoxalase II. Marasinghe GP, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA, Crowder MW. J Biol Chem; 2005 Dec 09; 280(49):40668-75. PubMed ID: 16227621 [Abstract] [Full Text] [Related]
5. Dual Activity BLEG-1 from Bacillus lehensis G1 Revealed Structural Resemblance to B3 Metallo-β-Lactamase and Glyoxalase II: An Insight into Its Enzyme Promiscuity and Evolutionary Divergence. Au SX, Dzulkifly NS, Muhd Noor ND, Matsumura H, Raja Abdul Rahman RNZ, Normi YM. Int J Mol Sci; 2021 Aug 29; 22(17):. PubMed ID: 34502284 [Abstract] [Full Text] [Related]
7. Design and evolution of new catalytic activity with an existing protein scaffold. Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS. Science; 2006 Jan 27; 311(5760):535-8. PubMed ID: 16439663 [Abstract] [Full Text] [Related]
8. Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. Reiger M, Lassak J, Jung K. FEMS Microbiol Lett; 2015 Jan 27; 362(2):1-7. PubMed ID: 25670698 [Abstract] [Full Text] [Related]
9. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Vogel A, Schilling O, Meyer-Klaucke W. Biochemistry; 2004 Aug 17; 43(32):10379-86. PubMed ID: 15301536 [Abstract] [Full Text] [Related]
10. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Cameron AD, Ridderström M, Olin B, Mannervik B. Structure; 1999 Sep 15; 7(9):1067-78. PubMed ID: 10508780 [Abstract] [Full Text] [Related]
11. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny. Silva MS, Barata L, Ferreira AE, Romão S, Tomás AM, Freire AP, Cordeiro C. Biochemistry; 2008 Jan 08; 47(1):195-204. PubMed ID: 18052346 [Abstract] [Full Text] [Related]
12. Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks. Miraula M, Schenk G, Mitić N. J Inorg Biochem; 2016 Sep 08; 162():366-375. PubMed ID: 26775612 [Abstract] [Full Text] [Related]
13. Human glyoxalase II contains an Fe(II)Zn(II) center but is active as a mononuclear Zn(II) enzyme. Limphong P, McKinney RM, Adams NE, Bennett B, Makaroff CA, Gunasekera T, Crowder MW. Biochemistry; 2009 Jun 16; 48(23):5426-34. PubMed ID: 19413286 [Abstract] [Full Text] [Related]
14. Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity. Crowder MW, Maiti MK, Banovic L, Makaroff CA. FEBS Lett; 1997 Dec 01; 418(3):351-4. PubMed ID: 9428743 [Abstract] [Full Text] [Related]
15. Identification of putative zinc hydrolase genes of the metallo-beta-lactamase superfamily from Campylobacter jejuni. Alfredson DA, Korolik V. FEMS Immunol Med Microbiol; 2007 Feb 01; 49(1):159-64. PubMed ID: 17266723 [Abstract] [Full Text] [Related]
16. Metal-dependent inhibition of glyoxalase II: a possible mechanism to regulate the enzyme activity. Campos-Bermudez VA, Morán-Barrio J, Costa-Filho AJ, Vila AJ. J Inorg Biochem; 2010 Jul 01; 104(7):726-31. PubMed ID: 20385411 [Abstract] [Full Text] [Related]
18. Structural and Functional Characterization of the PaaI Thioesterase from Streptococcus pneumoniae Reveals a Dual Specificity for Phenylacetyl-CoA and Medium-chain Fatty Acyl-CoAs and a Novel CoA-induced Fit Mechanism. Khandokar YB, Srivastava P, Sarker S, Swarbrick CMD, Aragao D, Cowieson N, Forwood JK. J Biol Chem; 2016 Jan 22; 291(4):1866-1876. PubMed ID: 26538563 [Abstract] [Full Text] [Related]
19. Structure of YciA from Haemophilus influenzae (HI0827), a hexameric broad specificity acyl-coenzyme A thioesterase. Willis MA, Zhuang Z, Song F, Howard A, Dunaway-Mariano D, Herzberg O. Biochemistry; 2008 Mar 04; 47(9):2797-805. PubMed ID: 18260643 [Abstract] [Full Text] [Related]
20. Converting GLX2-1 into an active glyoxalase II. Limphong P, Adams NE, Rouhier MF, McKinney RM, Naylor M, Bennett B, Makaroff CA, Crowder MW. Biochemistry; 2010 Sep 21; 49(37):8228-36. PubMed ID: 20715794 [Abstract] [Full Text] [Related] Page: [Next] [New Search]