These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 20674158
1. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ, Cirmo A. J Hazard Mater; 2010 Nov 15; 183(1-3):145-54. PubMed ID: 20674158 [Abstract] [Full Text] [Related]
2. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels. Horowitz SB, Finley BL. J Toxicol Environ Health; 1993 Dec 15; 40(4):585-99. PubMed ID: 8277520 [Abstract] [Full Text] [Related]
3. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. Chrysochoou M, Dermatas D. J Hazard Mater; 2007 Mar 15; 141(2):370-7. PubMed ID: 16842911 [Abstract] [Full Text] [Related]
4. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Malherbe J, Isaure MP, Séby F, Watson RP, Rodriguez-Gonzalez P, Stutzman PE, Davis CW, Maurizio C, Unceta N, Sieber JR, Long SE, Donard OF. Environ Sci Technol; 2011 Dec 15; 45(24):10492-500. PubMed ID: 22050765 [Abstract] [Full Text] [Related]
5. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Du J, Lu J, Wu Q, Jing C. J Hazard Mater; 2012 May 15; 215-216():152-8. PubMed ID: 22417394 [Abstract] [Full Text] [Related]
6. Chromium Speciation in the Size-Fractions of a Soil Polluted by Weathered Chromate Ore Process Residue Using Synchrotron X-ray Analysis. Zhang H, Zhou B, Ren J, Zhang L, Luo Y. Bull Environ Contam Toxicol; 2019 Jul 15; 103(1):3-9. PubMed ID: 30022345 [Abstract] [Full Text] [Related]
7. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM, Benson CH, Edil TB. Sci Total Environ; 2008 Feb 25; 391(1):13-25. PubMed ID: 18067949 [Abstract] [Full Text] [Related]
8. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR). Chrysochoou M, Fakra SC, Marcus MA, Moon DH, Dermatas D. Environ Sci Technol; 2009 Jul 15; 43(14):5461-6. PubMed ID: 19708382 [Abstract] [Full Text] [Related]
9. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W, Stewart DI, Humphreys PN, Rout SP, Burke IT. Sci Total Environ; 2016 Jan 15; 541():1191-1199. PubMed ID: 26476060 [Abstract] [Full Text] [Related]
10. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Jagupilla SC, Moon DH, Wazne M, Christodoulatos C, Kim MG. J Hazard Mater; 2009 Aug 30; 168(1):121-8. PubMed ID: 19272700 [Abstract] [Full Text] [Related]
11. Long-term treatment issues with chromite ore processing residue (COPR): Cr(6+) reduction and heave. Moon DH, Wazne M, Dermatas D, Christodoulatos C, Sanchez AM, Grubb DG, Chrysochoou M, Kim MG. J Hazard Mater; 2007 May 17; 143(3):629-35. PubMed ID: 17275184 [Abstract] [Full Text] [Related]
12. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Jagupilla SC, Wazne M, Moon DH. Chemosphere; 2015 Oct 17; 136():95-101. PubMed ID: 25966327 [Abstract] [Full Text] [Related]
13. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Hillier S, Roe MJ, Geelhoed JS, Fraser AR, Farmer JG, Paterson E. Sci Total Environ; 2003 Jun 01; 308(1-3):195-210. PubMed ID: 12738213 [Abstract] [Full Text] [Related]
14. Chromium speciation in mildly heated Cr(VI)-doped latosol soil. Wei YL, Hsieh HF, Peng YS, Chen KW, Lin CY, Wang HP. J Synchrotron Radiat; 2010 Mar 01; 17(2):173-8. PubMed ID: 20157268 [Abstract] [Full Text] [Related]
15. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG. Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835 [Abstract] [Full Text] [Related]
16. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. Matern K, Kletti H, Mansfeldt T. Chemosphere; 2016 Jul 15; 155():188-195. PubMed ID: 27111471 [Abstract] [Full Text] [Related]
17. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt. Moon DH, Wazne M, Koutsospyros A, Christodoulatos C, Gevgilili H, Malik M, Kalyon DM. J Hazard Mater; 2009 Jul 15; 166(1):27-32. PubMed ID: 18992990 [Abstract] [Full Text] [Related]
18. Impact of pyrolysis process on the chromium behavior of COPR. Zhang D, He S, Dai L, Xie Y, Wu D, Bu G, Peng K, Kong H. J Hazard Mater; 2009 Dec 30; 172(2-3):1597-601. PubMed ID: 19765898 [Abstract] [Full Text] [Related]
19. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). Wazne M, Jagupilla SC, Moon DH, Jagupilla SC, Christodoulatos C, Kim MG. J Hazard Mater; 2007 May 17; 143(3):620-8. PubMed ID: 17276597 [Abstract] [Full Text] [Related]