These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 20675930

  • 1. [Genetic basis for skeletal disease. Molecular advances in sclerosing bone disorders].
    Michigami T.
    Clin Calcium; 2010 Aug; 20(8):1196-202. PubMed ID: 20675930
    [Abstract] [Full Text] [Related]

  • 2. Heritable sclerosing bone disorders: presentation and new molecular mechanisms.
    de Vernejoul MC, Kornak U.
    Ann N Y Acad Sci; 2010 Mar; 1192():269-77. PubMed ID: 20392246
    [Abstract] [Full Text] [Related]

  • 3. Sclerosing bone disorders.
    de Vernejoul MC.
    Best Pract Res Clin Rheumatol; 2008 Mar; 22(1):71-83. PubMed ID: 18328982
    [Abstract] [Full Text] [Related]

  • 4. Human osteopetrosis and other sclerosing disorders: recent genetic developments.
    de Vernejoul MC, Bénichou O.
    Calcif Tissue Int; 2001 Jul; 69(1):1-6. PubMed ID: 11685426
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Severe developmental bone phenotype in ClC-7 deficient mice.
    Neutzsky-Wulff AV, Sims NA, Supanchart C, Kornak U, Felsenberg D, Poulton IJ, Martin TJ, Karsdal MA, Henriksen K.
    Dev Biol; 2010 Aug 15; 344(2):1001-10. PubMed ID: 20599900
    [Abstract] [Full Text] [Related]

  • 11. Localization of the mutation responsible for osteopetrosis in the op rat to a 1.5-cM genetic interval on rat chromosome 10: identification of positional candidate genes by radiation hybrid mapping.
    Dobbins DE, Joe B, Hashiramoto A, Salstrom JL, Dracheva S, Ge L, Wilder RL, Remmers EF.
    J Bone Miner Res; 2002 Oct 15; 17(10):1761-7. PubMed ID: 12369779
    [Abstract] [Full Text] [Related]

  • 12. Human Genetics of Sclerosing Bone Disorders.
    De Ridder R, Boudin E, Mortier G, Van Hul W.
    Curr Osteoporos Rep; 2018 Jun 15; 16(3):256-268. PubMed ID: 29656376
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.
    Kiviranta R, Morko J, Alatalo SL, NicAmhlaoibh R, Risteli J, Laitala-Leinonen T, Vuorio E.
    Bone; 2005 Jan 15; 36(1):159-72. PubMed ID: 15664014
    [Abstract] [Full Text] [Related]

  • 15. Identifying genes that regulate bone remodeling as potential therapeutic targets.
    Krane SM.
    J Exp Med; 2005 Mar 21; 201(6):841-3. PubMed ID: 15781576
    [Abstract] [Full Text] [Related]

  • 16. The effects of TGF-beta on bone.
    Mundy GR.
    Ciba Found Symp; 1991 Mar 21; 157():137-43; discussion 143-51. PubMed ID: 2070682
    [Abstract] [Full Text] [Related]

  • 17. Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation.
    Glass DA, Karsenty G.
    Ann N Y Acad Sci; 2006 Apr 21; 1068():117-30. PubMed ID: 16831912
    [Abstract] [Full Text] [Related]

  • 18. Current insights into the role of transforming growth factor-beta in bone resorption.
    Fox SW, Lovibond AC.
    Mol Cell Endocrinol; 2005 Nov 24; 243(1-2):19-26. PubMed ID: 16219413
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.