These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 20682763
1. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Xu J, Smith JC. Protein Eng Des Sel; 2010 Oct; 23(10):759-68. PubMed ID: 20682763 [Abstract] [Full Text] [Related]
8. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. Demishtein A, Karpol A, Barak Y, Lamed R, Bayer EA. J Mol Recognit; 2010 Mar 05; 23(6):525-35. PubMed ID: 21038354 [Abstract] [Full Text] [Related]
11. Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Craig SJ, Foong FC, Nordon R. J Biotechnol; 2006 Jan 24; 121(2):165-73. PubMed ID: 16111782 [Abstract] [Full Text] [Related]
12. Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). Sakka K, Kishino Y, Sugihara Y, Jindou S, Sakka M, Inagaki M, Kimura T, Sakka K. FEMS Microbiol Lett; 2009 Nov 24; 300(2):249-55. PubMed ID: 19811541 [Abstract] [Full Text] [Related]
13. Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. Brás JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, Bolam DN, Romão MJ, Gilbert HJ, Fontes CM. J Biol Chem; 2012 Dec 28; 287(53):44394-405. PubMed ID: 23118225 [Abstract] [Full Text] [Related]
14. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM. Biochem J; 2009 Dec 10; 424(3):375-84. PubMed ID: 19758121 [Abstract] [Full Text] [Related]
15. Reversible and multi-cyclic protein-protein interaction in bacterial cellulosome-mimic system using rod-shaped viral nanostructure. Kim HJ, Lee EJ, Park JS, Sim SJ, Lee J. J Biotechnol; 2016 Mar 10; 221():101-6. PubMed ID: 26820321 [Abstract] [Full Text] [Related]
16. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA. Methods Enzymol; 2012 Mar 10; 510():429-52. PubMed ID: 22608740 [Abstract] [Full Text] [Related]
17. Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation. Xu J, Crowley MF, Smith JC. Protein Sci; 2009 May 10; 18(5):949-59. PubMed ID: 19384997 [Abstract] [Full Text] [Related]
18. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum. Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):E11274-E11283. PubMed ID: 30429330 [Abstract] [Full Text] [Related]
19. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens. Weinstein JY, Slutzki M, Karpol A, Barak Y, Gul O, Lamed R, Bayer EA, Fried DB. J Mol Recognit; 2015 Mar 27; 28(3):148-54. PubMed ID: 25639797 [Abstract] [Full Text] [Related]
20. Noncellulosomal cohesin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Voronov-Goldman M, Lamed R, Noach I, Borovok I, Kwiat M, Rosenheck S, Shimon LJ, Bayer EA, Frolow F. Proteins; 2011 Jan 27; 79(1):50-60. PubMed ID: 20954171 [Abstract] [Full Text] [Related] Page: [Next] [New Search]