These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 20683852

  • 1. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.
    Jiang C, Flansburg L, Ghose S, Jorjorian P, Shukla AA.
    Biotechnol Bioeng; 2010 Dec 15; 107(6):985-97. PubMed ID: 20683852
    [Abstract] [Full Text] [Related]

  • 2. Defining process design space for monoclonal antibody cell culture.
    Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, Shukla AA.
    Biotechnol Bioeng; 2010 Aug 15; 106(6):894-905. PubMed ID: 20589669
    [Abstract] [Full Text] [Related]

  • 3. Large scale demonstration of a process analytical technology application in bioprocessing: use of on-line high performance liquid chromatography for making real time pooling decisions for process chromatography.
    Rathore AS, Parr L, Dermawan S, Lawson K, Lu Y.
    Biotechnol Prog; 2010 Aug 15; 26(2):448-57. PubMed ID: 19927320
    [Abstract] [Full Text] [Related]

  • 4. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein.
    Looby M, Ibarra N, Pierce JJ, Buckley K, O'Donovan E, Heenan M, Moran E, Farid SS, Baganz F.
    Biotechnol Prog; 2011 Aug 15; 27(6):1718-29. PubMed ID: 21948302
    [Abstract] [Full Text] [Related]

  • 5. Defining process design space for biotech products: case study of Pichia pastoris fermentation.
    Harms J, Wang X, Kim T, Yang X, Rathore AS.
    Biotechnol Prog; 2008 Aug 15; 24(3):655-62. PubMed ID: 18412404
    [Abstract] [Full Text] [Related]

  • 6. Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography.
    Rathore AS, Yu M, Yeboah S, Sharma A.
    Biotechnol Bioeng; 2008 Jun 01; 100(2):306-16. PubMed ID: 18078292
    [Abstract] [Full Text] [Related]

  • 7. Application of hydrophobic interaction displacement chromatography for an industrial protein purification.
    Sunasara KM, Xia F, Gronke RS, Cramer SM.
    Biotechnol Bioeng; 2003 May 05; 82(3):330-9. PubMed ID: 12599260
    [Abstract] [Full Text] [Related]

  • 8. Establishment of a design space for biopharmaceutical purification processes using DoE.
    Amadeo I, Mauro L, Ortí E, Forno G.
    Methods Mol Biol; 2014 May 05; 1129():11-27. PubMed ID: 24648063
    [Abstract] [Full Text] [Related]

  • 9. Influence of tryptophan tags on the purification of cutinase, secreted by a recombinant Saccharomyces cerevisiae, using cationic expanded bed adsorption and hydrophobic interaction chromatography.
    Lienqueo ME, Salazar O, Calado CR, Fonseca LP, Cabral JM.
    Biotechnol Lett; 2008 Aug 05; 30(8):1353-8. PubMed ID: 18365751
    [Abstract] [Full Text] [Related]

  • 10. Purification of an Fc-fusion biologic: clearance of multiple product related impurities by hydrophobic interaction chromatography.
    Evans DR, Macniven RP, Labanca M, Walker J, Notarnicola SM.
    J Chromatogr A; 2008 Jan 11; 1177(2):265-71. PubMed ID: 17692855
    [Abstract] [Full Text] [Related]

  • 11. Considerations for operational space definition and optimization of a no-salt flowthrough hydrophobic interaction chromatography purification step.
    Dilks AT, Gilchrist J, Lam Y, Nicholes N, Stanley B.
    Biotechnol Prog; 2023 Jan 11; 39(4):e3351. PubMed ID: 37102582
    [Abstract] [Full Text] [Related]

  • 12. Lysozyme retention on hydrophobic interaction chromatography predicts resin performance at large scale.
    Riske FJ, Smith MA, Zhang C, White KH.
    Biotechnol Appl Biochem; 2009 Oct 05; 54(3):157-62. PubMed ID: 19650769
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Multi-dimensional fractionation and characterization of crude protein mixtures: toward establishment of a database of protein purification process development parameters.
    Nfor BK, Ahamed T, Pinkse MW, van der Wielen LA, Verhaert PD, van Dedem GW, Eppink MH, van de Sandt EJ, Ottens M.
    Biotechnol Bioeng; 2012 Dec 05; 109(12):3070-83. PubMed ID: 22688729
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Preparative purification of a recombinant protein by hydrophobic interaction chromatography: modulation of selectivity by the use of chaotropic additives.
    Shukla AA, Peterson J, Sorge L, Lewis P, Thomas S, Waugh S.
    Biotechnol Prog; 2002 Dec 05; 18(3):556-64. PubMed ID: 12052073
    [Abstract] [Full Text] [Related]

  • 17. Development of a polishing step using a hydrophobic interaction membrane adsorber with a PER.C6-derived recombinant antibody.
    Kuczewski M, Fraud N, Faber R, Zarbis-Papastoitsis G.
    Biotechnol Bioeng; 2010 Feb 01; 105(2):296-305. PubMed ID: 19739096
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.
    Xu Z, Li J, Zhou JX.
    Prep Biochem Biotechnol; 2012 Feb 01; 42(2):183-202. PubMed ID: 22394066
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.