These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


327 related items for PubMed ID: 20687587

  • 1. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor.
    Rowe AA, Miller EA, Plaxco KW.
    Anal Chem; 2010 Sep 01; 82(17):7090-5. PubMed ID: 20687587
    [Abstract] [Full Text] [Related]

  • 2. Collagen Membranes with Ribonuclease Inhibitors for Long-Term Stability of Electrochemical Aptamer-Based Sensors Employing RNA.
    Santos-Cancel M, White RJ.
    Anal Chem; 2017 May 16; 89(10):5598-5604. PubMed ID: 28440619
    [Abstract] [Full Text] [Related]

  • 3. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR, Wagan S, White RJ.
    Anal Chem; 2014 Jan 21; 86(2):1131-7. PubMed ID: 24377296
    [Abstract] [Full Text] [Related]

  • 4. Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review.
    Li Z, Mohamed MA, Vinu Mohan AM, Zhu Z, Sharma V, Mishra GK, Mishra RK.
    Sensors (Basel); 2019 Dec 10; 19(24):. PubMed ID: 31835479
    [Abstract] [Full Text] [Related]

  • 5. An electrochemical aptamer-based sensor for the rapid and convenient measurement of L-tryptophan.
    Idili A, Gerson J, Parolo C, Kippin T, Plaxco KW.
    Anal Bioanal Chem; 2019 Jul 10; 411(19):4629-4635. PubMed ID: 30796485
    [Abstract] [Full Text] [Related]

  • 6. The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer-Based Sensors.
    Leung KK, Gerson J, Emmons N, Heemstra JM, Kippin TE, Plaxco KW.
    Angew Chem Int Ed Engl; 2024 May 21; 63(21):e202316678. PubMed ID: 38500260
    [Abstract] [Full Text] [Related]

  • 7. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity.
    Yu Z, Han X, Li F, Tan X, Shi W, Fu C, Yan H, Zhang G.
    Anal Bioanal Chem; 2020 Apr 21; 412(11):2391-2397. PubMed ID: 32076786
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity.
    Nie J, Yuan L, Jin K, Han X, Tian Y, Zhou N.
    Biosens Bioelectron; 2018 Dec 30; 122():254-262. PubMed ID: 30268963
    [Abstract] [Full Text] [Related]

  • 9. Aptamer-based electrochemical biosensor for interferon gamma detection.
    Liu Y, Tuleouva N, Ramanculov E, Revzin A.
    Anal Chem; 2010 Oct 01; 82(19):8131-6. PubMed ID: 20815336
    [Abstract] [Full Text] [Related]

  • 10. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond.
    Asai K, Yamamoto T, Nagashima S, Ogata G, Hibino H, Einaga Y.
    Analyst; 2020 Jan 21; 145(2):544-549. PubMed ID: 31764923
    [Abstract] [Full Text] [Related]

  • 11. Utilization of Spontaneous Alkyne-Gold Self-Assembly Chemistry as an Alternative Method for Fabricating Electrochemical Aptamer-Based Sensors.
    Olivan LA, Hand K, White RJ.
    Langmuir; 2024 Jun 11; 40(23):12117-12123. PubMed ID: 38826127
    [Abstract] [Full Text] [Related]

  • 12. Aptamer Sensors.
    Marrazza G.
    Biosensors (Basel); 2017 Jan 04; 7(1):. PubMed ID: 28054983
    [Abstract] [Full Text] [Related]

  • 13. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
    Liu Y, Canoura J, Alkhamis O, Xiao Y.
    ACS Appl Mater Interfaces; 2021 Mar 03; 13(8):9491-9499. PubMed ID: 33448791
    [Abstract] [Full Text] [Related]

  • 14. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection.
    Sun C, Han Q, Wang D, Xu W, Wang W, Zhao W, Zhou M.
    Anal Chim Acta; 2014 Nov 19; 850():33-40. PubMed ID: 25441157
    [Abstract] [Full Text] [Related]

  • 15. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance.
    Han X, Yu Z, Li F, Shi W, Fu C, Yan H, Zhang G.
    Bioelectrochemistry; 2019 Oct 19; 129():270-277. PubMed ID: 31254804
    [Abstract] [Full Text] [Related]

  • 16. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA, Plaxco KW.
    Acc Chem Res; 2010 Apr 20; 43(4):496-505. PubMed ID: 20201486
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.
    Daniel J, Fetter L, Jett S, Rowland TJ, Bonham AJ.
    Methods Mol Biol; 2017 Apr 20; 1600():9-23. PubMed ID: 28478553
    [Abstract] [Full Text] [Related]

  • 18. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen.
    Eissa S, Zourob M.
    Biosens Bioelectron; 2017 May 15; 91():169-174. PubMed ID: 28006685
    [Abstract] [Full Text] [Related]

  • 19. Calibration-Free Electrochemical Biosensors Supporting Accurate Molecular Measurements Directly in Undiluted Whole Blood.
    Li H, Dauphin-Ducharme P, Ortega G, Plaxco KW.
    J Am Chem Soc; 2017 Aug 16; 139(32):11207-11213. PubMed ID: 28712286
    [Abstract] [Full Text] [Related]

  • 20. Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream.
    Somerson J, Plaxco KW.
    Molecules; 2018 Apr 15; 23(4):. PubMed ID: 29662036
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.