These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 20688310
1. Role of electrostatic interactions during protein ultrafiltration. Rohani MM, Zydney AL. Adv Colloid Interface Sci; 2010 Oct 15; 160(1-2):40-8. PubMed ID: 20688310 [Abstract] [Full Text] [Related]
2. Retention of small charged impurities during ultrafiltration. Shao J, Zydney AL. Biotechnol Bioeng; 2004 Jul 05; 87(1):7-13. PubMed ID: 15211483 [Abstract] [Full Text] [Related]
3. Use of protein charge ladders to study electrostatic interactions during protein ultrafiltration. Ebersold MF, Zydney AL. Biotechnol Bioeng; 2004 Jan 20; 85(2):166-76. PubMed ID: 14704999 [Abstract] [Full Text] [Related]
4. Charged ultrafiltration membranes increase the selectivity of whey protein separations. Bhushan S, Etzel MR. J Food Sci; 2009 Apr 20; 74(3):E131-9. PubMed ID: 19397718 [Abstract] [Full Text] [Related]
5. Separation of protein charge variants by ultrafiltration. Ebersold MF, Zydney AL. Biotechnol Prog; 2004 Apr 20; 20(2):543-9. PubMed ID: 15059001 [Abstract] [Full Text] [Related]
6. Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Pujar NS, Zydney AL. J Chromatogr A; 1998 Feb 20; 796(2):229-38. PubMed ID: 9540208 [Abstract] [Full Text] [Related]
7. Effect of ion binding on protein transport through ultrafiltration membranes. Menon MK, Zydney AL. Biotechnol Bioeng; 1999 May 05; 63(3):298-307. PubMed ID: 10099609 [Abstract] [Full Text] [Related]
11. Controlling protein transport in ultrafiltration using small charged ligands. Rao S, Zydney AL. Biotechnol Bioeng; 2005 Sep 20; 91(6):733-42. PubMed ID: 15895379 [Abstract] [Full Text] [Related]
12. Effect of membrane charge on flow and protein transport during ultrafiltration. Mehta A, Zydney AL. Biotechnol Prog; 2006 Sep 20; 22(2):484-92. PubMed ID: 16599566 [Abstract] [Full Text] [Related]
14. On removal of charge singularity in Poisson-Boltzmann equation. Cai Q, Wang J, Zhao HK, Luo R. J Chem Phys; 2009 Apr 14; 130(14):145101. PubMed ID: 19368474 [Abstract] [Full Text] [Related]
16. Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation. Holst M, Kozack RE, Saied F, Subramaniam S. Proteins; 1994 Mar 14; 18(3):231-45. PubMed ID: 8202464 [Abstract] [Full Text] [Related]
17. Development of a biomimetic nanoporous membrane for the selective transport of charged proteins. Nguyen BT, Ting EZ, Toh CS. Bioinspir Biomim; 2008 Sep 14; 3(3):035008. PubMed ID: 18667763 [Abstract] [Full Text] [Related]
18. Performance characteristics of nanoporous carbon membranes for protein ultrafiltration. Shah TN, Foley HC, Zydney AL. Biotechnol Prog; 2007 Sep 14; 23(5):1157-62. PubMed ID: 17848095 [Abstract] [Full Text] [Related]
19. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Mochizuki S, Zydney AL. Biotechnol Prog; 1992 Sep 14; 8(6):553-61. PubMed ID: 1369038 [Abstract] [Full Text] [Related]
20. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model. Dahirel V, Jardat M, Dufrêche JF, Turq P. J Chem Phys; 2007 Sep 07; 127(9):095101. PubMed ID: 17824765 [Abstract] [Full Text] [Related] Page: [Next] [New Search]