These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


626 related items for PubMed ID: 20694969

  • 21. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.
    Renghini C, Komlev V, Fiori F, Verné E, Baino F, Vitale-Brovarone C.
    Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R, Kumar A.
    J Biomater Sci Polym Ed; 2011 May; 22(16):2107-26. PubMed ID: 21067655
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S, Chang J, Chou L.
    J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.
    Gao C, Gao Q, Li Y, Rahaman MN, Teramoto A, Abe K.
    J Biomed Mater Res A; 2012 May; 100(5):1324-34. PubMed ID: 22374712
    [Abstract] [Full Text] [Related]

  • 29. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB, Li YC, Du Plessis J, Hodgson PD, Wen C.
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [Abstract] [Full Text] [Related]

  • 30. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds.
    Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q.
    Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097
    [Abstract] [Full Text] [Related]

  • 31. An in vitro comparison of possibly bioactive titanium implant surfaces.
    Göransson A, Arvidsson A, Currie F, Franke-Stenport V, Kjellin P, Mustafa K, Sul YT, Wennerberg A.
    J Biomed Mater Res A; 2009 Mar 15; 88(4):1037-47. PubMed ID: 18404711
    [Abstract] [Full Text] [Related]

  • 32. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, Wang D, Zhang C.
    Acta Biomater; 2015 Mar 15; 14():185-96. PubMed ID: 25534470
    [Abstract] [Full Text] [Related]

  • 33. Mineralization and osteoblast response to bioactive glass in vitro.
    Zhou ZH, Yi QF, Nei HD, Ling YL, Zhou JN, Liu LH, Liu XP.
    J Med Eng Technol; 2010 May 15; 34(4):285-90. PubMed ID: 20397850
    [Abstract] [Full Text] [Related]

  • 34. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL.
    J Biomed Mater Res A; 2009 Oct 15; 91(1):175-86. PubMed ID: 18780358
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy.
    Cortés DA, Medina A, Escobedo JC, Escobedo S, López MA.
    J Biomed Mater Res A; 2004 Aug 01; 70(2):341-6. PubMed ID: 15227680
    [Abstract] [Full Text] [Related]

  • 37. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F.
    J Biomater Appl; 2011 Nov 01; 26(4):465-89. PubMed ID: 20566654
    [Abstract] [Full Text] [Related]

  • 38. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths.
    Gough JE, Notingher I, Hench LL.
    J Biomed Mater Res A; 2004 Mar 15; 68(4):640-50. PubMed ID: 14986319
    [Abstract] [Full Text] [Related]

  • 39. Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite.
    El-Ghannam A, Ducheyne P, Shapiro IM.
    J Orthop Res; 1999 May 15; 17(3):340-5. PubMed ID: 10376721
    [Abstract] [Full Text] [Related]

  • 40. Hydroxyapatite/SiO(2)-CaO-P(2)O(5) glass materials: in vitro bioactivity and biocompatibility.
    Padilla S, Román J, Sánchez-Salcedo S, Vallet-Regí M.
    Acta Biomater; 2006 May 15; 2(3):331-42. PubMed ID: 16701892
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 32.