These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
216 related items for PubMed ID: 20696654
41. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ]. Ruiz-Vera UM, Siebers MH, Drag DW, Ort DR, Bernacchi CJ. Glob Chang Biol; 2015 Nov; 21(11):4237-49. PubMed ID: 26119211 [Abstract] [Full Text] [Related]
42. Linking remote sensing parameters to CO2 assimilation rates at a leaf scale. Hikosaka K, Tsujimoto K. J Plant Res; 2021 Jul; 134(4):695-711. PubMed ID: 34019204 [Abstract] [Full Text] [Related]
43. Modelling plant responses to elevated CO2: how important is leaf area index? Ewert F. Ann Bot; 2004 Jun; 93(6):619-27. PubMed ID: 15102613 [Abstract] [Full Text] [Related]
44. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Yendrek CR, Erice G, Montes CM, Tomaz T, Sorgini CA, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA. Plant Cell Environ; 2017 Dec; 40(12):3088-3100. PubMed ID: 29044553 [Abstract] [Full Text] [Related]
45. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS, Schaffer B. Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [Abstract] [Full Text] [Related]
46. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA, Hufkens K, O'Keef J, Klosterman S, Munger JW, Toome M, Richardson AD. Ecol Appl; 2014 Jan; 24(6):1478-89. PubMed ID: 29160668 [Abstract] [Full Text] [Related]
47. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. Sanz-Sáez Á, Koester RP, Rosenthal DM, Montes CM, Ort DR, Ainsworth EA. Glob Chang Biol; 2017 Sep; 23(9):3908-3920. PubMed ID: 28267246 [Abstract] [Full Text] [Related]
48. Soil nitrogen transformations under elevated atmospheric CO₂ and O₃ during the soybean growing season. Pujol Pereira EI, Chung H, Scow K, Sadowsky MJ, van Kessel C, Six J. Environ Pollut; 2011 Feb; 159(2):401-7. PubMed ID: 21115216 [Abstract] [Full Text] [Related]
50. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Yang H, Yang X, Zhang Y, Heskel MA, Lu X, Munger JW, Sun S, Tang J. Glob Chang Biol; 2017 Jul; 23(7):2874-2886. PubMed ID: 27976474 [Abstract] [Full Text] [Related]
51. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO(2) and ozone concentrations for 3 years under fully open-air field conditions. Bernacchi CJ, Leakey AD, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR. Plant Cell Environ; 2006 Nov; 29(11):2077-90. PubMed ID: 17081242 [Abstract] [Full Text] [Related]
52. [Effects of elevated CO2 or/and O3 on growth and daily changes of photosynthesis in leaves of Pinus armandi]. Wang LL, He XY, Chen W. Huan Jing Ke Xue; 2010 Jan; 31(1):36-40. PubMed ID: 20329513 [Abstract] [Full Text] [Related]
53. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Buchmann N, Kao WY, Ehleringer J. Oecologia; 1997 Mar; 110(1):109-119. PubMed ID: 28307459 [Abstract] [Full Text] [Related]
54. Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence. Kimm H, Guan K, Burroughs CH, Peng B, Ainsworth EA, Bernacchi CJ, Moore CE, Kumagai E, Yang X, Berry JA, Wu G. Glob Chang Biol; 2021 Jun; 27(11):2403-2415. PubMed ID: 33844873 [Abstract] [Full Text] [Related]
55. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Rahimzadeh-Bajgiran P, Munehiro M, Omasa K. Photosynth Res; 2012 Sep; 113(1-3):261-71. PubMed ID: 22644476 [Abstract] [Full Text] [Related]
56. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT, Lewis JD, Wullschleger SD, Amthor JS, Griffin KL, Anderson OR. Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [Abstract] [Full Text] [Related]
58. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3. Riikonen J, Kets K, Darbah J, Oksanen E, Sober A, Vapaavuori E, Kubiske ME, Nelson N, Karnosky DF. Tree Physiol; 2008 Feb; 28(2):243-54. PubMed ID: 18055435 [Abstract] [Full Text] [Related]
60. A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy. Cifuentes R, Van der Zande D, Salas-Eljatib C, Farifteh J, Coppin P. Sensors (Basel); 2018 Oct 08; 18(10):. PubMed ID: 30297651 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]