These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 20699334

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.
    Daye D, Wellen KE.
    Semin Cell Dev Biol; 2012 Jun; 23(4):362-9. PubMed ID: 22349059
    [Abstract] [Full Text] [Related]

  • 3. Glucose metabolism and cancer.
    Shaw RJ.
    Curr Opin Cell Biol; 2006 Dec; 18(6):598-608. PubMed ID: 17046224
    [Abstract] [Full Text] [Related]

  • 4. miRNAs link metabolic reprogramming to oncogenesis.
    Hatziapostolou M, Polytarchou C, Iliopoulos D.
    Trends Endocrinol Metab; 2013 Jul; 24(7):361-73. PubMed ID: 23602813
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Oncogenic properties of the endogenous fatty acid metabolism: molecular pathology of fatty acid synthase in cancer cells.
    Menendez JA, Lupu R.
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):346-57. PubMed ID: 16778562
    [Abstract] [Full Text] [Related]

  • 8. The metabolic switch and its regulation in cancer cells.
    Zhou S, Huang C, Wei Y.
    Sci China Life Sci; 2010 Aug; 53(8):942-58. PubMed ID: 20821293
    [Abstract] [Full Text] [Related]

  • 9. Comparative energy metabolism in cultured heart muscle and HeLa cells.
    Stanisz J, Wice BM, Kennell DE.
    J Cell Physiol; 1983 Jun; 115(3):320-30. PubMed ID: 6853608
    [Abstract] [Full Text] [Related]

  • 10. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer.
    Liu Y.
    Prostate Cancer Prostatic Dis; 2006 Jun; 9(3):230-4. PubMed ID: 16683009
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O.
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [Abstract] [Full Text] [Related]

  • 13. Caveolin-1 in the regulation of cell metabolism: a cancer perspective.
    Nwosu ZC, Ebert MP, Dooley S, Meyer C.
    Mol Cancer; 2016 Nov 16; 15(1):71. PubMed ID: 27852311
    [Abstract] [Full Text] [Related]

  • 14. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R.
    Mol Aspects Med; 2010 Apr 16; 31(2):145-70. PubMed ID: 20206201
    [Abstract] [Full Text] [Related]

  • 15. Mitochondria in cancer: not just innocent bystanders.
    Frezza C, Gottlieb E.
    Semin Cancer Biol; 2009 Feb 16; 19(1):4-11. PubMed ID: 19101633
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J, Wagner R.
    J Cell Physiol; 1996 Jan 16; 166(1):152-69. PubMed ID: 8557765
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.
    Gatenby RA, Gawlinski ET.
    Cancer Res; 2003 Jul 15; 63(14):3847-54. PubMed ID: 12873971
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.