These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 20707451
1. A computational study of the effect of vocal-fold asymmetry on phonation. Xue Q, Mittal R, Zheng X, Bielamowicz S. J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451 [Abstract] [Full Text] [Related]
2. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X, Bielamowicz S, Luo H, Mittal R. Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [Abstract] [Full Text] [Related]
3. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model. Xue Q, Zheng X, Mittal R, Bielamowicz S. J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589 [Abstract] [Full Text] [Related]
4. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models. de Vries MP, Schutte HK, Veldman AE, Verkerke GJ. J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868 [Abstract] [Full Text] [Related]
5. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR, Scherer RC, Dewitt KJ, Ng TT. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [Abstract] [Full Text] [Related]
6. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English. Monsen RB, Engebretson AM, Vemula NR. J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003 [Abstract] [Full Text] [Related]
9. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C, Zhang Y, Hottinger DG, Jiang JJ. J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [Abstract] [Full Text] [Related]
10. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z. J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [Abstract] [Full Text] [Related]
11. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration. Berke GS, Hanson DG, Gerratt BR, Trapp TK, Macagba C, Natividad M. Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407 [Abstract] [Full Text] [Related]
12. On the application of the lattice Boltzmann method to the investigation of glottal flow. Kucinschi BR, Afjeh AA, Scherer RC. J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995 [Abstract] [Full Text] [Related]
13. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers. Iwahashi T, Ogawa M, Hosokawa K, Kato C, Inohara H. J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905 [Abstract] [Full Text] [Related]
14. Vocal fold bulging effects on phonation using a biophysical computer model. Alipour F, Scherer RC. J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105 [Abstract] [Full Text] [Related]
15. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration. Chhetri DK, Neubauer J, Bergeron JL, Sofer E, Peng KA, Jamal N. Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542 [Abstract] [Full Text] [Related]
16. Experimental analysis of the characteristics of artificial vocal folds. Misun V, Svancara P, Vasek M. J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864 [Abstract] [Full Text] [Related]
17. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling. Kaburagi T. J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519 [Abstract] [Full Text] [Related]
18. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. Zheng X, Mittal R, Xue Q, Bielamowicz S. J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908 [Abstract] [Full Text] [Related]
19. Optimized transformation of the glottal motion into a mechanical model. Triep M, Brücker C, Stingl M, Döllinger M. Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [Abstract] [Full Text] [Related]
20. Simulation of vocal fold impact pressures with a self-oscillating finite-element model. Tao C, Jiang JJ, Zhang Y. J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541 [Abstract] [Full Text] [Related] Page: [Next] [New Search]