These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


590 related items for PubMed ID: 20709389

  • 1. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells.
    Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC.
    Biomaterials; 2010 Nov; 31(32):8494-506. PubMed ID: 20709389
    [Abstract] [Full Text] [Related]

  • 2. A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread.
    Loessner D, Rizzi SC, Stok KS, Fuehrmann T, Hollier B, Magdolen V, Hutmacher DW, Clements JA.
    Biomaterials; 2013 Oct; 34(30):7389-400. PubMed ID: 23827191
    [Abstract] [Full Text] [Related]

  • 3. The effect of matrix characteristics on fibroblast proliferation in 3D gels.
    Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP, Rizzi SC.
    Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983
    [Abstract] [Full Text] [Related]

  • 4. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S, Clary JM, Seliktar D, Lipke EA.
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [Abstract] [Full Text] [Related]

  • 5. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance.
    Loessner D, Quent VM, Kraemer J, Weber EC, Hutmacher DW, Magdolen V, Clements JA.
    Gynecol Oncol; 2012 Dec; 127(3):569-78. PubMed ID: 22964375
    [Abstract] [Full Text] [Related]

  • 6. Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach.
    Loessner D, Flegg JA, Byrne HM, Clements JA, Hutmacher DW.
    Integr Biol (Camb); 2013 Mar; 5(3):597-605. PubMed ID: 23388834
    [Abstract] [Full Text] [Related]

  • 7. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.
    Shin HS, Kook YM, Hong HJ, Kim YM, Koh WG, Lim JY.
    Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814
    [Abstract] [Full Text] [Related]

  • 8. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials.
    Song H, Cai GH, Liang J, Ao DS, Wang H, Yang ZH.
    J Nanobiotechnology; 2020 Jun 11; 18(1):90. PubMed ID: 32527266
    [Abstract] [Full Text] [Related]

  • 9. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C, Tong X, Yang F.
    Mol Pharm; 2014 Jul 07; 11(7):2115-25. PubMed ID: 24712441
    [Abstract] [Full Text] [Related]

  • 10. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY, Smith LJ, Shoichet MS.
    Acc Chem Res; 2017 Apr 18; 50(4):703-713. PubMed ID: 28345876
    [Abstract] [Full Text] [Related]

  • 11. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro.
    Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA, Lawrenson K.
    Lab Invest; 2013 May 18; 93(5):528-42. PubMed ID: 23459371
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effect of 3D matrix compositions on the efficacy of EGFR inhibition in pancreatic ductal adenocarcinoma cells.
    Ki CS, Shih H, Lin CC.
    Biomacromolecules; 2013 Sep 09; 14(9):3017-26. PubMed ID: 23889305
    [Abstract] [Full Text] [Related]

  • 16. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C, Chiang B, Lewin Mejia D, Luker KE, Luker GD, Lee A.
    Acta Biomater; 2019 Jan 01; 83():221-232. PubMed ID: 30414485
    [Abstract] [Full Text] [Related]

  • 17. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV, Gaspar VM, Ferreira LP, Mano JF.
    Biomater Sci; 2020 Mar 31; 8(7):1855-1864. PubMed ID: 32091033
    [Abstract] [Full Text] [Related]

  • 18. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system.
    Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D.
    Acta Biomater; 2014 Jun 31; 10(6):2551-62. PubMed ID: 24590158
    [Abstract] [Full Text] [Related]

  • 19. Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays.
    Tofani LB, Abriata JP, Luiz MT, Marchetti JM, Swiech K.
    Biotechnol Prog; 2020 Nov 31; 36(6):e3034. PubMed ID: 32519461
    [Abstract] [Full Text] [Related]

  • 20. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M, Close DA, Mukundan S, Johnston PA, Sant S.
    Assay Drug Dev Technol; 2015 Nov 31; 13(9):570-83. PubMed ID: 26274587
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.