These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 20720220
21. A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Beltran WA, Hammond P, Acland GM, Aguirre GD. Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1669-81. PubMed ID: 16565408 [Abstract] [Full Text] [Related]
22. Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. Fraser B, DuVal MG, Wang H, Allison WT. PLoS One; 2013 Apr; 8(1):e55410. PubMed ID: 23383182 [Abstract] [Full Text] [Related]
23. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Chaney SY, Mukherjee S, Giddabasappa A, Rueda EM, Hamilton WR, Johnson JE, Fox DA. Mol Vis; 2016 Apr; 22():1468-1489. PubMed ID: 28050121 [Abstract] [Full Text] [Related]
24. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Murakami Y, Matsumoto H, Roh M, Suzuki J, Hisatomi T, Ikeda Y, Miller JW, Vavvas DG. Proc Natl Acad Sci U S A; 2012 Sep 04; 109(36):14598-603. PubMed ID: 22908283 [Abstract] [Full Text] [Related]
25. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM, Moritz OL. Invest Ophthalmol Vis Sci; 2006 Aug 04; 47(8):3234-41. PubMed ID: 16877386 [Abstract] [Full Text] [Related]
26. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration. Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B. Invest Ophthalmol Vis Sci; 2003 Aug 04; 44(8):3614-21. PubMed ID: 12882815 [Abstract] [Full Text] [Related]
27. Gene expression changes within Müller glial cells in retinitis pigmentosa. Roesch K, Stadler MB, Cepko CL. Mol Vis; 2012 Aug 04; 18():1197-214. PubMed ID: 22665967 [Abstract] [Full Text] [Related]
28. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA, Gregory-Evans CY, Metcalfe AL, Bashar E, Moritz OL, Gregory-Evans K. Mol Neurobiol; 2019 Mar 04; 56(3):1637-1652. PubMed ID: 29911255 [Abstract] [Full Text] [Related]
29. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Li ZY, Wong F, Chang JH, Possin DE, Hao Y, Petters RM, Milam AH. Invest Ophthalmol Vis Sci; 1998 Apr 04; 39(5):808-19. PubMed ID: 9538889 [Abstract] [Full Text] [Related]
30. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina. Blackmon SM, Peng YW, Hao Y, Moon SJ, Oliveira LB, Tatebayashi M, Petters RM, Wong F. Brain Res; 2000 Dec 01; 885(1):53-61. PubMed ID: 11121529 [Abstract] [Full Text] [Related]
31. Absence of Sigma 1 Receptor Accelerates Photoreceptor Cell Death in a Murine Model of Retinitis Pigmentosa. Wang J, Saul A, Cui X, Roon P, Smith SB. Invest Ophthalmol Vis Sci; 2017 Sep 01; 58(11):4545-4558. PubMed ID: 28877319 [Abstract] [Full Text] [Related]
32. Detailed histopathologic characterization of the retinopathy, globe enlarged (rge) chick phenotype. Montiani-Ferreira F, Fischer A, Cernuda-Cernuda R, Kiupel M, DeGrip WJ, Sherry D, Cho SS, Shaw GC, Evans MG, Hocking PM, Petersen-Jones SM. Mol Vis; 2005 Jan 13; 11():11-27. PubMed ID: 15660021 [Abstract] [Full Text] [Related]
33. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. Hollingsworth TJ, Gross AK. J Biol Chem; 2013 Oct 04; 288(40):29047-55. PubMed ID: 23940033 [Abstract] [Full Text] [Related]
34. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O'Brien J. Cells; 2020 Oct 06; 9(10):. PubMed ID: 33036185 [Abstract] [Full Text] [Related]
35. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1. Sato S, Peshenko IV, Olshevskaya EV, Kefalov VJ, Dizhoor AM. J Neurosci; 2018 Mar 21; 38(12):2990-3000. PubMed ID: 29440533 [Abstract] [Full Text] [Related]
36. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas. Dang L, Pulukuri S, Mears AJ, Swaroop A, Reese BE, Sitaramayya A. Mol Vis; 2004 May 11; 10():323-7. PubMed ID: 15152186 [Abstract] [Full Text] [Related]
37. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. Yu WQ, Grzywacz NM, Lee EJ, Field GD. J Neurophysiol; 2017 Jul 01; 118(1):434-454. PubMed ID: 28424296 [Abstract] [Full Text] [Related]
38. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei. Boudard DL, Tanimoto N, Huber G, Beck SC, Seeliger MW, Hicks D. Neuroscience; 2010 Sep 15; 169(4):1815-30. PubMed ID: 20600653 [Abstract] [Full Text] [Related]
39. Photoreceptor ablation following ATP induced injury triggers Müller glia driven regeneration in zebrafish. Brandli A, Dudczig S, Currie PD, Jusuf PR. Exp Eye Res; 2021 Jun 15; 207():108569. PubMed ID: 33839111 [Abstract] [Full Text] [Related]
40. Cone photoreceptors develop normally in the absence of functional rod photoreceptors in a transgenic swine model of retinitis pigmentosa. Fernandez de Castro JP, Scott PA, Fransen JW, Demas J, DeMarco PJ, Kaplan HJ, McCall MA. Invest Ophthalmol Vis Sci; 2014 Apr 17; 55(4):2460-8. PubMed ID: 24618325 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]