These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 20724061
1. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams. Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M, Thewys T. J Environ Manage; 2010 Dec; 91(12):2736-47. PubMed ID: 20724061 [Abstract] [Full Text] [Related]
2. Economics of willow pyrolysis after phytoextraction. Thewys T, Kuppens T. Int J Phytoremediation; 2008 Dec; 10(6):561-83. PubMed ID: 19260233 [Abstract] [Full Text] [Related]
3. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example. Liu WJ, Tian K, Jiang H, Zhang XS, Ding HS, Yu HQ. Environ Sci Technol; 2012 Jul 17; 46(14):7849-56. PubMed ID: 22708628 [Abstract] [Full Text] [Related]
4. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis. Hammer NL, Boateng AA, Mullen CA, Wheeler MC. J Environ Manage; 2013 Oct 15; 128():594-601. PubMed ID: 23845952 [Abstract] [Full Text] [Related]
5. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FM. Environ Pollut; 2005 Sep 15; 137(2):354-64. PubMed ID: 15963374 [Abstract] [Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS, Dhagat NN. Indian J Environ Health; 2001 Apr 15; 43(2):1-82. PubMed ID: 12397675 [Abstract] [Full Text] [Related]
7. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Chen G, Liu C, Ma W, Zhang X, Li Y, Yan B, Zhou W. Bioresour Technol; 2014 Aug 15; 166():500-7. PubMed ID: 24951937 [Abstract] [Full Text] [Related]
8. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW. Environ Pollut; 2007 Jul 15; 148(1):155-65. PubMed ID: 17241723 [Abstract] [Full Text] [Related]
9. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ. Environ Pollut; 2021 Jun 01; 278():116836. PubMed ID: 33689952 [Abstract] [Full Text] [Related]
10. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Zhang H, Xiao R, Wang D, He G, Shao S, Zhang J, Zhong Z. Bioresour Technol; 2011 Mar 01; 102(5):4258-64. PubMed ID: 21232946 [Abstract] [Full Text] [Related]
11. Techno-economic analysis of advanced biofuel production based on bio-oil gasification. Li Q, Zhang Y, Hu G. Bioresour Technol; 2015 Sep 01; 191():88-96. PubMed ID: 25983227 [Abstract] [Full Text] [Related]
12. [Bio-oil production from biomass pyrolysis in molten salt]. Ji D, Cai T, Ai N, Yu F, Jiang H, Ji J. Sheng Wu Gong Cheng Xue Bao; 2011 Mar 01; 27(3):475-81. PubMed ID: 21650030 [Abstract] [Full Text] [Related]
13. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. Environ Sci Technol; 2010 Jan 15; 44(2):827-33. PubMed ID: 20030368 [Abstract] [Full Text] [Related]
14. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R. Environ Pollut; 2004 Oct 15; 131(3):485-94. PubMed ID: 15261412 [Abstract] [Full Text] [Related]
15. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst T. Environ Pollut; 2006 Jul 15; 142(1):160-9. PubMed ID: 16278041 [Abstract] [Full Text] [Related]
16. Effect of the previous composting on volatiles production during biomass pyrolysis. Barneto AG, Ariza Carmona J, Díaz Blanco MJ. J Phys Chem A; 2010 Mar 25; 114(11):3756-63. PubMed ID: 19642694 [Abstract] [Full Text] [Related]
17. Large-scale biohydrogen production from bio-oil. Sarkar S, Kumar A. Bioresour Technol; 2010 Oct 25; 101(19):7350-61. PubMed ID: 20452203 [Abstract] [Full Text] [Related]
18. Sustainable options for the utilization of solid residues from wine production. Zhang N, Hoadley A, Patel J, Lim S, Li C. Waste Manag; 2017 Feb 25; 60():173-183. PubMed ID: 28094155 [Abstract] [Full Text] [Related]
19. Woody biomass phytoremediation of contaminated brownfield land. French CJ, Dickinson NM, Putwain PD. Environ Pollut; 2006 Jun 25; 141(3):387-95. PubMed ID: 16271426 [Abstract] [Full Text] [Related]
20. An investigation into the impact of CO2 co-feed on pyrolysis and gasification. Kwon E, Kim S. Chemosphere; 2010 Aug 25; 80(8):957-63. PubMed ID: 20546843 [Abstract] [Full Text] [Related] Page: [Next] [New Search]