These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


835 related items for PubMed ID: 20726510

  • 1. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms.
    Wang H, Li J, Wang Y, Jin J, Yang R, Wang K, Tan W.
    Anal Chem; 2010 Sep 15; 82(18):7684-90. PubMed ID: 20726510
    [Abstract] [Full Text] [Related]

  • 2. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J, Chu X, Liu Y, Jiang JH, He Z, Zhang Z, Shen G, Yu RQ.
    Nucleic Acids Res; 2005 Oct 27; 33(19):e168. PubMed ID: 16257979
    [Abstract] [Full Text] [Related]

  • 3. A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
    Liu M, Zhao H, Chen S, Yu H, Zhang Y, Quan X.
    Biosens Bioelectron; 2011 Jun 15; 26(10):4213-6. PubMed ID: 21514138
    [Abstract] [Full Text] [Related]

  • 4. A sensitive fluorescence anisotropy method for point mutation detection by using core-shell fluorescent nanoparticles and high-fidelity DNA ligase.
    Deng T, Li J, Jiang JH, Shen GL, Yu RQ.
    Chemistry; 2007 Jun 15; 13(27):7725-30. PubMed ID: 17607685
    [Abstract] [Full Text] [Related]

  • 5. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.
    Chen YT, Hsu CL, Hou SY.
    Anal Biochem; 2008 Apr 15; 375(2):299-305. PubMed ID: 18211817
    [Abstract] [Full Text] [Related]

  • 6. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO, Kang T, Lee K, Lee SY, Joo SW.
    Colloids Surf B Biointerfaces; 2012 May 01; 93():148-53. PubMed ID: 22261178
    [Abstract] [Full Text] [Related]

  • 7. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H, Wang Y, Jin J, Yang R.
    Anal Chem; 2008 Dec 01; 80(23):9021-8. PubMed ID: 19551976
    [Abstract] [Full Text] [Related]

  • 8. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.
    Wang X, Zou M, Huang H, Ren Y, Li L, Yang X, Li N.
    Biosens Bioelectron; 2013 Mar 15; 41():569-75. PubMed ID: 23062556
    [Abstract] [Full Text] [Related]

  • 9. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.
    Ma JL, Yin BC, Le HN, Ye BC.
    ACS Appl Mater Interfaces; 2015 Jun 17; 7(23):12856-63. PubMed ID: 26024337
    [Abstract] [Full Text] [Related]

  • 10. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN, Lee KH, Su X.
    Anal Chem; 2011 Jun 01; 83(11):4251-7. PubMed ID: 21524056
    [Abstract] [Full Text] [Related]

  • 11. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform.
    Li H, Zhang Y, Wang L, Tian J, Sun X.
    Chem Commun (Camb); 2011 Jan 21; 47(3):961-3. PubMed ID: 21079843
    [Abstract] [Full Text] [Related]

  • 12. Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles.
    Zuo X, Wu H, Toh J, Li SF.
    Talanta; 2010 Oct 15; 82(5):1642-6. PubMed ID: 20875557
    [Abstract] [Full Text] [Related]

  • 13. A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA.
    Ma H, Li Z, Xue N, Cheng Z, Miao X.
    Mikrochim Acta; 2018 Jan 10; 185(2):93. PubMed ID: 29594738
    [Abstract] [Full Text] [Related]

  • 14. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles.
    He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G.
    Anal Chem; 2010 Sep 01; 82(17):7169-77. PubMed ID: 20681563
    [Abstract] [Full Text] [Related]

  • 15. Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection.
    Kim YS, Jurng J.
    Analyst; 2011 Sep 21; 136(18):3720-4. PubMed ID: 21799952
    [Abstract] [Full Text] [Related]

  • 16. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Li H, Rothberg LJ.
    Anal Chem; 2004 Sep 15; 76(18):5414-7. PubMed ID: 15362900
    [Abstract] [Full Text] [Related]

  • 17. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C, Zhou Y, Miao X, Ling L.
    Analyst; 2011 May 21; 136(10):2106-10. PubMed ID: 21442091
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of G-quadruplex assembling by DNA ligation: a versatile and non-covalent labeling strategy for bioanalysis.
    Ren J, Wang J, Wang J, Wang E.
    Biosens Bioelectron; 2014 Jan 15; 51():336-42. PubMed ID: 23994843
    [Abstract] [Full Text] [Related]

  • 19. A novel automated assay with dual-color hybridization for single-nucleotide polymorphisms genotyping on gold magnetic nanoparticle array.
    Li S, Liu H, Liu L, Tian L, He N.
    Anal Biochem; 2010 Oct 01; 405(1):141-3. PubMed ID: 20507822
    [Abstract] [Full Text] [Related]

  • 20. Template-independent ligation of single-stranded DNA by T4 DNA ligase.
    Kuhn H, Frank-Kamenetskii MD.
    FEBS J; 2005 Dec 01; 272(23):5991-6000. PubMed ID: 16302964
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 42.