These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 20728647

  • 1. Pedestrian injury mitigation by autonomous braking.
    Rosén E, Källhammer JE, Eriksson D, Nentwich M, Fredriksson R, Smith K.
    Accid Anal Prev; 2010 Nov; 42(6):1949-57. PubMed ID: 20728647
    [Abstract] [Full Text] [Related]

  • 2. Priorities of pedestrian protection--a real-life study of severe injuries and car sources.
    Fredriksson R, Rosén E, Kullgren A.
    Accid Anal Prev; 2010 Nov; 42(6):1672-81. PubMed ID: 20728616
    [Abstract] [Full Text] [Related]

  • 3. Estimate of potential benefit for Europe of fitting Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.
    Edwards M, Nathanson A, Wisch M.
    Traffic Inj Prev; 2014 Nov; 15 Suppl 1():S173-82. PubMed ID: 25307384
    [Abstract] [Full Text] [Related]

  • 4. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.
    Edwards M, Nathanson A, Carroll J, Wisch M, Zander O, Lubbe N.
    Traffic Inj Prev; 2015 Nov; 16 Suppl 1():S2-S11. PubMed ID: 26027971
    [Abstract] [Full Text] [Related]

  • 5. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH, Sherony R, Gabler HC.
    Traffic Inj Prev; 2019 Nov; 20(sup1):S171-S176. PubMed ID: 31381447
    [Abstract] [Full Text] [Related]

  • 6. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H, Östling M, Lubbe N.
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [Abstract] [Full Text] [Related]

  • 7. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington.
    Moudon AV, Lin L, Jiao J, Hurvitz P, Reeves P.
    Accid Anal Prev; 2011 Jan; 43(1):11-24. PubMed ID: 21094292
    [Abstract] [Full Text] [Related]

  • 8. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H, Lubbe N.
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [Abstract] [Full Text] [Related]

  • 9. Logistic regression analysis of pedestrian casualty risk in passenger vehicle collisions in China.
    Kong C, Yang J.
    Accid Anal Prev; 2010 Jul; 42(4):987-93. PubMed ID: 20441804
    [Abstract] [Full Text] [Related]

  • 10. Have pedestrian subsystem tests improved passenger car front shape?
    Li G, Wang F, Otte D, Cai Z, Simms C.
    Accid Anal Prev; 2018 Jun; 115():143-150. PubMed ID: 29571012
    [Abstract] [Full Text] [Related]

  • 11. Situations of car-to-pedestrian contact.
    Matsui Y, Hitosugi M, Takahashi K, Doi T.
    Traffic Inj Prev; 2013 Jun; 14(1):73-7. PubMed ID: 23259521
    [Abstract] [Full Text] [Related]

  • 12. Crash avoidance potential of four passenger vehicle technologies.
    Jermakian JS.
    Accid Anal Prev; 2011 May; 43(3):732-40. PubMed ID: 21376861
    [Abstract] [Full Text] [Related]

  • 13. Potential benefits of controlled vehicle braking to reduce pedestrian ground contact injuries.
    Zou T, Shang S, Simms C.
    Accid Anal Prev; 2019 Aug; 129():94-107. PubMed ID: 31132748
    [Abstract] [Full Text] [Related]

  • 14. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model.
    Kim JK, Ulfarsson GF, Shankar VN, Mannering FL.
    Accid Anal Prev; 2010 Nov; 42(6):1751-8. PubMed ID: 20728626
    [Abstract] [Full Text] [Related]

  • 15. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y, Yang J, Mizuno K, Matsui Y.
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [Abstract] [Full Text] [Related]

  • 16. Differential benefit of sensor system field-of-view and range in pedestrian automated emergency braking systems.
    Haus SH, Sherony R, Gabler HC.
    Traffic Inj Prev; 2021 Sep; 22(sup1):S111-S115. PubMed ID: 34469208
    [Abstract] [Full Text] [Related]

  • 17. Issues and challenges for pedestrian active safety systems based on real world accidents.
    Hamdane H, Serre T, Masson C, Anderson R.
    Accid Anal Prev; 2015 Sep; 82():53-60. PubMed ID: 26047007
    [Abstract] [Full Text] [Related]

  • 18. Performance of collision damage mitigation braking systems and their effects on human injury in the event of car-to-pedestrian accidents.
    Matsui Y, Han Y, Mizuno K.
    Stapp Car Crash J; 2011 Nov; 55():461-78. PubMed ID: 22869318
    [Abstract] [Full Text] [Related]

  • 19. United States pedestrian fatality rates by vehicle type.
    Paulozzi LJ.
    Inj Prev; 2005 Aug; 11(4):232-6. PubMed ID: 16081753
    [Abstract] [Full Text] [Related]

  • 20. Injury protection and accident causation parameters for vulnerable road users based on German In-Depth Accident Study GIDAS.
    Otte D, Jänsch M, Haasper C.
    Accid Anal Prev; 2012 Jan; 44(1):149-53. PubMed ID: 22062349
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.