These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 20730644
21. Stability of cereal allergens. Varjonen E, Björkstén F, Savolainen J. Clin Exp Allergy; 1996 Apr; 26(4):436-43. PubMed ID: 8732241 [Abstract] [Full Text] [Related]
22. TAXI type endoxylanase inhibitors in different cereals. Goesaert H, Gebruers K, Brijs K, Courtin CM, Delcour JA. J Agric Food Chem; 2003 Jun 18; 51(13):3770-5. PubMed ID: 12797742 [Abstract] [Full Text] [Related]
23. A comparison of contents of group A and B trichothecenes and microbial counts in different cereal species. Perkowski J, Stuper K, Buśko M, Góral T, Jeleń H, Wiwart M, Suchowilska E. Food Addit Contam Part B Surveill; 2012 Jun 18; 5(3):151-9. PubMed ID: 24779779 [Abstract] [Full Text] [Related]
24. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. Chen Y, Ross AB, Aman P, Kamal-Eldin A. J Agric Food Chem; 2004 Dec 29; 52(26):8242-6. PubMed ID: 15612824 [Abstract] [Full Text] [Related]
25. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. Hanhineva K, Rogachev I, Aura AM, Aharoni A, Poutanen K, Mykkänen H. J Agric Food Chem; 2011 Feb 09; 59(3):921-7. PubMed ID: 21214244 [Abstract] [Full Text] [Related]
26. 210Pb and 210Po in Finnish cereals. Turtiainen T, Kostiainen E, Hallikainen A. J Environ Radioact; 2011 May 09; 102(5):438-42. PubMed ID: 21035236 [Abstract] [Full Text] [Related]
27. Characterization of the volatile organic compounds of Italian 'Fossa' cheese by solid-phase microextraction gas chromatography/mass spectrometry. Gioacchini AM, De Santi M, Guescini M, Brandi G, Stocchi V. Rapid Commun Mass Spectrom; 2010 Dec 15; 24(23):3405-12. PubMed ID: 21072795 [Abstract] [Full Text] [Related]
28. Identification of barley and rye varieties using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Bloch HA, Petersen M, Sperotto MM, Keşmir C, Radzikowski L, Jacobsen S, Søndergaard I. Rapid Commun Mass Spectrom; 2001 Dec 15; 15(6):440-5. PubMed ID: 11291123 [Abstract] [Full Text] [Related]
29. Determination of the volatile profile of stoned table olives from different varieties by using HS-SPME and GC/IT-MS. Malheiro R, de Pinho PG, Casal S, Bento A, Pereira JA. J Sci Food Agric; 2011 Jul 15; 91(9):1693-701. PubMed ID: 21448862 [Abstract] [Full Text] [Related]
30. Antioxidant and anticholinesterase effects of frequently consumed cereal grains using in vitro test models. Senol FS, Kan A, Coksari G, Orhan IE. Int J Food Sci Nutr; 2012 Aug 15; 63(5):553-9. PubMed ID: 22149516 [Abstract] [Full Text] [Related]
31. Analytical performance of three commonly used extraction methods for the gas chromatography-mass spectrometry analysis of wine volatile compounds. Andujar-Ortiz I, Moreno-Arribas MV, Martín-Alvarez PJ, Pozo-Bayón MA. J Chromatogr A; 2009 Oct 23; 1216(43):7351-7. PubMed ID: 19732903 [Abstract] [Full Text] [Related]
32. Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). Johanningsmeier SD, McFeeters RF. J Food Sci; 2011 Oct 23; 76(1):C168-77. PubMed ID: 21535646 [Abstract] [Full Text] [Related]
33. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Zhao Y, Xu Y, Li J, Fan W, Jiang W. J Food Sci; 2009 Mar 23; 74(2):C90-9. PubMed ID: 19323737 [Abstract] [Full Text] [Related]
34. [Cereal products as a source of iron and manganese]. Kot A, Zareba S. Rocz Panstw Zakl Hig; 2005 Mar 23; 56(1):91-6. PubMed ID: 16080449 [Abstract] [Full Text] [Related]
35. Metabolites of lesser grain borer in grains. Seitz LM, Ram MS. J Agric Food Chem; 2004 Feb 25; 52(4):898-908. PubMed ID: 14969548 [Abstract] [Full Text] [Related]
36. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. Liu K. J Food Sci; 2011 Mar 25; 76(2):C334-42. PubMed ID: 21535754 [Abstract] [Full Text] [Related]
37. Study on seafood volatile profile characteristics during storage and its potential use for freshness evaluation by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry. Zhang Z, Li G, Luo L, Chen G. Anal Chim Acta; 2010 Feb 05; 659(1-2):151-8. PubMed ID: 20103118 [Abstract] [Full Text] [Related]
38. Determination of the activity of acidic phytate-degrading enzymes in cereal seeds. Greiner R, Egli I. J Agric Food Chem; 2003 Feb 12; 51(4):847-50. PubMed ID: 12568536 [Abstract] [Full Text] [Related]
39. Volatile Compounds of Different Fresh Wet Noodle Cultivars Evaluated by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Wu Y, Liang S, Zheng Y, Zhang M. An Acad Bras Cienc; 2020 Feb 12; 92(3):e20190063. PubMed ID: 33263657 [Abstract] [Full Text] [Related]
40. Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Movafeghi A, Djozan Dj, Razeghi JA, Baheri T. Nat Prod Res; 2010 May 12; 24(8):703-9. PubMed ID: 20432151 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]