These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 20731685

  • 1. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment.
    Tobin L, Simonsen L, Bülow J.
    Clin Physiol Funct Imaging; 2010 Nov; 30(6):447-52. PubMed ID: 20731685
    [Abstract] [Full Text] [Related]

  • 2. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes.
    Tobin L, Simonsen L, Bülow J.
    Clin Physiol Funct Imaging; 2011 Nov; 31(6):458-63. PubMed ID: 21981457
    [Abstract] [Full Text] [Related]

  • 3. Contrast-enhanced ultrasound using bolus injections of contrast agent for assessment of postprandial microvascular blood volume in human skeletal muscle.
    Mertz KH, Bülow J, Holm L.
    Clin Physiol Funct Imaging; 2018 Sep; 38(5):864-871. PubMed ID: 29282853
    [Abstract] [Full Text] [Related]

  • 4. A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat.
    Sjøberg KA, Rattigan S, Hiscock N, Richter EA, Kiens B.
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H450-8. PubMed ID: 21622816
    [Abstract] [Full Text] [Related]

  • 5. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.
    Mulder AH, van Dijk AP, Smits P, Tack CJ.
    Microcirculation; 2008 Apr; 15(3):203-13. PubMed ID: 18386216
    [Abstract] [Full Text] [Related]

  • 6. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment.
    Coggins M, Lindner J, Rattigan S, Jahn L, Fasy E, Kaul S, Barrett E.
    Diabetes; 2001 Dec; 50(12):2682-90. PubMed ID: 11723050
    [Abstract] [Full Text] [Related]

  • 7. High-resolution ultrasound perfusion imaging of therapeutic angiogenesis.
    Rissanen TT, Korpisalo P, Karvinen H, Liimatainen T, Laidinen S, Gröhn OH, Ylä-Herttuala S.
    JACC Cardiovasc Imaging; 2008 Jan; 1(1):83-91. PubMed ID: 19356410
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow.
    Blaak EE, van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH.
    Clin Sci (Lond); 1994 Nov; 87(5):559-66. PubMed ID: 7874845
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Assessing skeletal muscle variations in microvascular pressure and unstressed blood volume at the bedside.
    De Blasi RA, Arcioni R.
    Microcirculation; 2014 Oct; 21(7):606-14. PubMed ID: 24702908
    [Abstract] [Full Text] [Related]

  • 13. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound.
    Krix M, Weber MA, Kauczor HU, Delorme S, Krakowski-Roosen H.
    Eur J Radiol; 2010 Oct; 76(1):110-6. PubMed ID: 19541442
    [Abstract] [Full Text] [Related]

  • 14. Contrast-enhanced ultrasound assessment of impaired adipose tissue and muscle perfusion in insulin-resistant mice.
    Belcik JT, Davidson BP, Foster T, Qi Y, Zhao Y, Peters D, Lindner JR.
    Circ Cardiovasc Imaging; 2015 Apr; 8(4):. PubMed ID: 25855669
    [Abstract] [Full Text] [Related]

  • 15. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL, Nam MCY, Bailey TG, Anstey C, Golledge J, Keske MA, Greaves K, Askew CD.
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [Abstract] [Full Text] [Related]

  • 16. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound.
    Krix M, Krakowski-Roosen H, Amarteifio E, Fürstenberger S, Delorme S, Kauczor HU, Weber MA.
    Eur J Radiol; 2011 Jun; 78(3):419-24. PubMed ID: 20005060
    [Abstract] [Full Text] [Related]

  • 17. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL, Nam MCY, Bailey TG, Magee R, Golledge J, Hellsten Y, Keske MA, Greaves K, Askew CD.
    Am J Physiol Heart Circ Physiol; 2018 Nov 01; 315(5):H1425-H1433. PubMed ID: 30095999
    [Abstract] [Full Text] [Related]

  • 18. Contrast-enhanced ultrasound measurement of microvascular perfusion relevant to nutrient and hormone delivery in skeletal muscle: a model study in vitro.
    Ross RM, Downey K, Newman JM, Richards SM, Clark MG, Rattigan S.
    Microvasc Res; 2008 Apr 01; 75(3):323-9. PubMed ID: 18207201
    [Abstract] [Full Text] [Related]

  • 19. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM, Bauer WR.
    Herz; 2003 Mar 01; 28(2):74-81. PubMed ID: 12669220
    [Abstract] [Full Text] [Related]

  • 20. Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people.
    Russell RD, Hu D, Greenaway T, Sharman JE, Rattigan S, Richards SM, Keske MA.
    Am J Physiol Endocrinol Metab; 2018 Aug 01; 315(2):E307-E315. PubMed ID: 29763373
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.