These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 20736050

  • 1. Orbitofrontal dopaminergic dysfunction causes age-related impairment of reversal learning in rats.
    Mizoguchi K, Shoji H, Tanaka Y, Tabira T.
    Neuroscience; 2010 Nov 10; 170(4):1110-9. PubMed ID: 20736050
    [Abstract] [Full Text] [Related]

  • 2. Age-related spatial working memory impairment is caused by prefrontal cortical dopaminergic dysfunction in rats.
    Mizoguchi K, Shoji H, Tanaka Y, Maruyama W, Tabira T.
    Neuroscience; 2009 Sep 15; 162(4):1192-201. PubMed ID: 19463906
    [Abstract] [Full Text] [Related]

  • 3. Ameliorative effect of traditional Japanese medicine yokukansan on age-related impairments of working memory and reversal learning in rats.
    Mizoguchi K, Shoji H, Tanaka Y, Tabira T.
    Neuroscience; 2011 Mar 17; 177():127-37. PubMed ID: 21195139
    [Abstract] [Full Text] [Related]

  • 4. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning.
    Ghods-Sharifi S, Haluk DM, Floresco SB.
    Neurobiol Learn Mem; 2008 May 17; 89(4):567-73. PubMed ID: 18054257
    [Abstract] [Full Text] [Related]

  • 5. Anxiolytic effect of a herbal medicine, yokukansan, in aged rats: involvement of serotonergic and dopaminergic transmissions in the prefrontal cortex.
    Mizoguchi K, Tanaka Y, Tabira T.
    J Ethnopharmacol; 2010 Jan 08; 127(1):70-6. PubMed ID: 19799980
    [Abstract] [Full Text] [Related]

  • 6. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction.
    Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T.
    J Neurosci; 2000 Feb 15; 20(4):1568-74. PubMed ID: 10662846
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effects of SKF-38393, a dopamine D1 receptor agonist on expression of amphetamine-induced behavioral sensitization and expression of immediate early gene arc in prefrontal cortex of rats.
    Moro H, Sato H, Ida I, Oshima A, Sakurai N, Shihara N, Horikawa Y, Mikuni M.
    Pharmacol Biochem Behav; 2007 May 15; 87(1):56-64. PubMed ID: 17499349
    [Abstract] [Full Text] [Related]

  • 9. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility.
    Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL.
    Cereb Cortex; 2016 Dec 15; 26(12):4524-4539. PubMed ID: 26405054
    [Abstract] [Full Text] [Related]

  • 10. Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task.
    Winstanley CA, Zeeb FD, Bedard A, Fu K, Lai B, Steele C, Wong AC.
    Behav Brain Res; 2010 Jul 11; 210(2):263-72. PubMed ID: 20206211
    [Abstract] [Full Text] [Related]

  • 11. Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats.
    Li N, Wu X, Li L.
    Behav Pharmacol; 2007 Mar 11; 18(2):135-45. PubMed ID: 17351420
    [Abstract] [Full Text] [Related]

  • 12. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys.
    Cai JX, Arnsten AF.
    J Pharmacol Exp Ther; 1997 Oct 11; 283(1):183-9. PubMed ID: 9336323
    [Abstract] [Full Text] [Related]

  • 13. Estrogen increases the sensitivity of ovariectomized rats to the disruptive effects produced by antagonism of D2 but not D1 dopamine receptors during performance of a response learning task.
    Daniel JM, Sulzer JK, Hulst JL.
    Horm Behav; 2006 Jan 11; 49(1):38-44. PubMed ID: 15936760
    [Abstract] [Full Text] [Related]

  • 14. Infralimbic D1 receptor agonist effects on spontaneous novelty exploration and anxiety-like defensive responding in CD-1 mice.
    Wall PM, Blanchard RJ, Markham C, Yang M, Blanchard DC.
    Behav Brain Res; 2004 Jun 04; 152(1):67-79. PubMed ID: 15135970
    [Abstract] [Full Text] [Related]

  • 15. Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats.
    Doherty MD, Gratton A.
    Brain Res; 1996 Apr 09; 715(1-2):86-97. PubMed ID: 8739626
    [Abstract] [Full Text] [Related]

  • 16. Suppression of glucocorticoid secretion induces a behaviorally depressive state in rotarod performance in rat.
    Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Tabira T.
    Pharmacol Biochem Behav; 2008 Oct 09; 90(4):730-4. PubMed ID: 18582494
    [Abstract] [Full Text] [Related]

  • 17. Evidence for dopamine D(1) receptor involvement in the stimulus selection task: overshadowing in the rat.
    O'Tuathaigh CM, Moran PM.
    Psychopharmacology (Berl); 2002 Jul 09; 162(3):225-31. PubMed ID: 12122479
    [Abstract] [Full Text] [Related]

  • 18. Dopamine D1 receptor involvement in the discriminative-stimulus effects of SKF 81297 in squirrel monkeys.
    Rosenzweig-Lipson S, Bergman J.
    J Pharmacol Exp Ther; 1993 Nov 09; 267(2):765-75. PubMed ID: 7902432
    [Abstract] [Full Text] [Related]

  • 19. D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats.
    Rios Valentim SJ, Gontijo AV, Peres MD, Rodrigues LC, Nakamura-Palacios EM.
    Behav Brain Res; 2009 Dec 01; 204(1):124-8. PubMed ID: 19482047
    [Abstract] [Full Text] [Related]

  • 20. Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior.
    van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG.
    Cereb Cortex; 2007 Jun 01; 17(6):1444-53. PubMed ID: 16920882
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.