These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 2078504
1. Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light. Kier CK, Chamberlain SC. Vis Neurosci; 1990 Mar; 4(3):237-55. PubMed ID: 2078504 [Abstract] [Full Text] [Related]
2. Localization of actin filaments and microtubules in the cells of the Limulus lateral and ventral eyes. Calman BG, Chamberlain SC. Vis Neurosci; 1992 Mar; 9(3-4):365-75. PubMed ID: 1390394 [Abstract] [Full Text] [Related]
3. Control of structural rhythms in the lateral eye of Limulus: interactions of natural lighting and circadian efferent activity. Chamberlain SC, Barlow RB. J Neurosci; 1987 Jul; 7(7):2135-44. PubMed ID: 3612232 [Abstract] [Full Text] [Related]
4. Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. Arikawa K, Kawamata K, Suzuki T, Eguchi E. J Comp Physiol A; 1987 Aug; 161(2):161-74. PubMed ID: 3625570 [Abstract] [Full Text] [Related]
5. Circadian efferent input to Limulus eyes: anatomy, circuitry, and impact. Battelle BA. Microsc Res Tech; 2002 Aug 15; 58(4):345-55. PubMed ID: 12214301 [Abstract] [Full Text] [Related]
6. Circadian rhythms in Limulus photoreceptors. I. Intracellular studies. Barlow RB, Kaplan E, Renninger GH, Saito T. J Gen Physiol; 1987 Mar 15; 89(3):353-78. PubMed ID: 3559515 [Abstract] [Full Text] [Related]
7. Regulation of arrestin mRNA levels in Limulus lateral eye: separate and combined influences of circadian efferent input and light. Battelle BA, Williams CD, Schremser-Berlin JL, Cacciatore C. Vis Neurosci; 2000 Mar 15; 17(2):217-27. PubMed ID: 10824676 [Abstract] [Full Text] [Related]
8. Central regulation of photosensitive membrane turnover in the lateral eye of Limulus. I. Octopamine primes the retina for daily transient rhabdom shedding. Khadilkar RV, Mytinger JR, Thomason LE, Runyon SL, Washicosky KJ, Jinks RN. Vis Neurosci; 2002 Mar 15; 19(3):283-97. PubMed ID: 12392178 [Abstract] [Full Text] [Related]
9. Neuropeptide modulation of photosensitivity. II. Physiological and anatomical effects of substance P on the lateral eye of Limulus. Mancillas JR, Selverston AI. J Neurosci; 1984 Mar 15; 4(3):847-59. PubMed ID: 6200585 [Abstract] [Full Text] [Related]
10. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock. Battelle BA, Kempler KE, Parker AK, Gaddie CD. J Exp Biol; 2013 May 15; 216(Pt 10):1837-49. PubMed ID: 23393287 [Abstract] [Full Text] [Related]
11. Limulus brain modulates the structure and function of the lateral eyes. Barlow RB, Chamberlain SC, Levinson JZ. Science; 1980 Nov 28; 210(4473):1037-9. PubMed ID: 7434015 [Abstract] [Full Text] [Related]
12. Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting. Pieprzyk AR, Weiner WW, Chamberlain SC. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug 28; 189(8):643-53. PubMed ID: 12827424 [Abstract] [Full Text] [Related]
13. Multiple mechanisms of rhabdom shedding in the lateral eye of Limulus polyphemus. Sacunas RB, Papuga MO, Malone MA, Pearson AC, Marjanovic M, Stroope DG, Weiner WW, Chamberlain SC, Battelle BA. J Comp Neurol; 2002 Jul 15; 449(1):26-42. PubMed ID: 12115691 [Abstract] [Full Text] [Related]
14. Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. Chamberlain SC, Barlow RB. J Neurosci; 1984 Nov 15; 4(11):2792-810. PubMed ID: 6502204 [Abstract] [Full Text] [Related]
15. Light and efferent activity control rhabdom turnover in Limulus photoreceptors. Chamberlain SC, Barlow RB. Science; 1979 Oct 19; 206(4416):361-3. PubMed ID: 482946 [Abstract] [Full Text] [Related]
16. Dawn, diacylglycerol, calcium, and protein kinase C--the retinal wrecking crew. A signal transduction cascade for rhabdom shedding in the Limulus eye. Jinks RN, White RH, Chamberlain SC. J Photochem Photobiol B; 1996 Aug 19; 35(1-2):45-52. PubMed ID: 8823934 [Abstract] [Full Text] [Related]
17. Photoreceptor cells dissociated from the compound lateral eye of the horseshoe crab, Limulus polyphemus, I: Structure and ultrastructure. Jinks RN, Hanna WJ, Renninger GH, Chamberlain SC. Vis Neurosci; 1993 Aug 19; 10(4):597-607. PubMed ID: 8338799 [Abstract] [Full Text] [Related]
18. Autoradiographic localization of newly synthesized octopamine to retinal efferents in the Limulus visual system. Evans JA, Chamberlain SC, Battelle BA. J Comp Neurol; 1983 Oct 01; 219(4):369-83. PubMed ID: 6417196 [Abstract] [Full Text] [Related]
19. Limulus opsins: diurnal regulation of expression. Dalal JS, Jinks RN, Cacciatore C, Greenberg RM, Battelle BA. Vis Neurosci; 2003 Oct 01; 20(5):523-34. PubMed ID: 14977331 [Abstract] [Full Text] [Related]
20. Light-stimulated rhabdom turnover in Limulus ventral photoreceptors maintained in vitro. Herman KG. J Comp Neurol; 1991 Jan 01; 303(1):11-21. PubMed ID: 2005235 [Abstract] [Full Text] [Related] Page: [Next] [New Search]