These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 20801452

  • 1. Determination of toe-off event time during treadmill locomotion using kinematic data.
    De Witt JK.
    J Biomech; 2010 Nov 16; 43(15):3067-9. PubMed ID: 20801452
    [Abstract] [Full Text] [Related]

  • 2. Identifying gait events without a force plate during running: a comparison of methods.
    Leitch J, Stebbins J, Paolini G, Zavatsky AB.
    Gait Posture; 2011 Jan 16; 33(1):130-2. PubMed ID: 21084195
    [Abstract] [Full Text] [Related]

  • 3. Assessment and validation of a simple automated method for the detection of gait events and intervals.
    Ghoussayni S, Stevens C, Durham S, Ewins D.
    Gait Posture; 2004 Dec 16; 20(3):266-72. PubMed ID: 15531173
    [Abstract] [Full Text] [Related]

  • 4. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking.
    Nagano H, Begg RK, Sparrow WA, Taylor S.
    Clin Biomech (Bristol); 2011 Nov 16; 26(9):962-8. PubMed ID: 21719169
    [Abstract] [Full Text] [Related]

  • 5. Two simple methods for determining gait events during treadmill and overground walking using kinematic data.
    Zeni JA, Richards JG, Higginson JS.
    Gait Posture; 2008 May 16; 27(4):710-4. PubMed ID: 17723303
    [Abstract] [Full Text] [Related]

  • 6. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects.
    Alwan M, Ledoux A, Wasson G, Sheth P, Huang C.
    Med Eng Phys; 2007 Apr 16; 29(3):380-9. PubMed ID: 16843697
    [Abstract] [Full Text] [Related]

  • 7. Instantaneous treadmill speed determination using subject's kinematic data.
    Fusco N, Crétual A.
    Gait Posture; 2008 Nov 16; 28(4):663-7. PubMed ID: 18571925
    [Abstract] [Full Text] [Related]

  • 8. Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force.
    Warabi T, Kato M, Kiriyama K, Yoshida T, Kobayashi N.
    Neurosci Res; 2005 Nov 16; 53(3):343-8. PubMed ID: 16182398
    [Abstract] [Full Text] [Related]

  • 9. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA, Koller C, Arch ES.
    J Biomech; 2020 Jan 23; 99():109481. PubMed ID: 31718818
    [Abstract] [Full Text] [Related]

  • 10. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G, Percival P, Morgan D, Lai D.
    Gait Posture; 2012 Mar 23; 35(3):478-82. PubMed ID: 22300731
    [Abstract] [Full Text] [Related]

  • 11. Automatic detection of gait events using kinematic data.
    O'Connor CM, Thorpe SK, O'Malley MJ, Vaughan CL.
    Gait Posture; 2007 Mar 23; 25(3):469-74. PubMed ID: 16876414
    [Abstract] [Full Text] [Related]

  • 12. Comparison of Five Kinematic-Based Identification Methods of Foot Contact Events During Treadmill Walking and Running at Different Speeds.
    Alvim F, Cerqueira L, Netto AD, Leite G, Muniz A.
    J Appl Biomech; 2015 Oct 23; 31(5):383-8. PubMed ID: 25950421
    [Abstract] [Full Text] [Related]

  • 13. A kinematic comparison of overground and treadmill running.
    Nigg BM, De Boer RW, Fisher V.
    Med Sci Sports Exerc; 1995 Jan 23; 27(1):98-105. PubMed ID: 7898346
    [Abstract] [Full Text] [Related]

  • 14. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B, Rochat S, Büla CJ, Aminian K.
    IEEE Trans Biomed Eng; 2012 Nov 23; 59(11):3162-8. PubMed ID: 22955865
    [Abstract] [Full Text] [Related]

  • 15. Comparison of methods for kinematic identification of footstrike and toe-off during overground and treadmill running.
    Fellin RE, Rose WC, Royer TD, Davis IS.
    J Sci Med Sport; 2010 Nov 23; 13(6):646-50. PubMed ID: 20478742
    [Abstract] [Full Text] [Related]

  • 16. A novel kinematic detection of foot-strike and toe-off events during noninstrumented treadmill running to estimate contact time.
    Patoz A, Lussiana T, Gindre C, Malatesta D.
    J Biomech; 2021 Nov 09; 128():110737. PubMed ID: 34517256
    [Abstract] [Full Text] [Related]

  • 17. Mechanics of toe and heel landing in stepping down in ongoing gait.
    van Dieën JH, Spanjaard M, Könemann R, Bron L, Pijnappels M.
    J Biomech; 2008 Aug 07; 41(11):2417-21. PubMed ID: 18619600
    [Abstract] [Full Text] [Related]

  • 18. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT, Mao DW, Li JX, Hong Y.
    J Biomech; 2008 Aug 07; 41(4):838-44. PubMed ID: 18068710
    [Abstract] [Full Text] [Related]

  • 19. Gait event detection using a multilayer neural network.
    Miller A.
    Gait Posture; 2009 Jun 07; 29(4):542-5. PubMed ID: 19135372
    [Abstract] [Full Text] [Related]

  • 20. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT, Gramann K, Makeig S, Ferris DP.
    Neuroimage; 2011 Jan 15; 54(2):1289-96. PubMed ID: 20832484
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.