These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 20806246
1. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J. J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246 [Abstract] [Full Text] [Related]
2. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T. Yeast; 2008 Nov; 25(11):825-33. PubMed ID: 19061187 [Abstract] [Full Text] [Related]
3. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531 [Abstract] [Full Text] [Related]
4. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S. Enzyme Microb Technol; 2012 Jun 10; 51(1):16-25. PubMed ID: 22579386 [Abstract] [Full Text] [Related]
5. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. Hector RE, Bowman MJ, Skory CD, Cotta MA. N Biotechnol; 2009 Oct 31; 26(3-4):171-80. PubMed ID: 19712762 [Abstract] [Full Text] [Related]
6. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Sasaki H, Uemura H. Yeast; 2005 Jan 30; 22(2):111-27. PubMed ID: 15645478 [Abstract] [Full Text] [Related]
7. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. Heux S, Cadiere A, Dequin S. FEMS Yeast Res; 2008 Mar 30; 8(2):217-24. PubMed ID: 18036177 [Abstract] [Full Text] [Related]
8. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway. Cadière A, Galeote V, Dequin S. FEMS Yeast Res; 2010 Nov 30; 10(7):819-27. PubMed ID: 20738406 [Abstract] [Full Text] [Related]
9. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. Nguyen TT, Kitajima S, Izawa S. J Biosci Bioeng; 2014 Sep 30; 118(3):263-9. PubMed ID: 24725964 [Abstract] [Full Text] [Related]
10. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Larochelle M, Drouin S, Robert F, Turcotte B. Mol Cell Biol; 2006 Sep 30; 26(17):6690-701. PubMed ID: 16914749 [Abstract] [Full Text] [Related]
11. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A. FEMS Yeast Res; 2008 Nov 30; 8(7):1127-36. PubMed ID: 18554307 [Abstract] [Full Text] [Related]
12. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Aranda A, del Olmo Ml Ml. Yeast; 2003 Jun 30; 20(8):747-59. PubMed ID: 12794936 [Abstract] [Full Text] [Related]
13. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M, Thevelein JM, Van Dijck P. Yeast; 2004 Jan 15; 21(1):75-86. PubMed ID: 14745784 [Abstract] [Full Text] [Related]
14. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Brombacher K, Fischer BB, Rüfenacht K, Eggen RI. Yeast; 2006 Jul 30; 23(10):741-50. PubMed ID: 16862604 [Abstract] [Full Text] [Related]
15. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Toivari MH, Maaheimo H, Penttilä M, Ruohonen L. Appl Microbiol Biotechnol; 2010 Jan 30; 85(3):731-9. PubMed ID: 19711072 [Abstract] [Full Text] [Related]
16. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae. Dilova I, Powers T. FEMS Yeast Res; 2006 Jan 30; 6(1):112-9. PubMed ID: 16423076 [Abstract] [Full Text] [Related]
17. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN, Silljé HH, Verbakel JM, Verrips CT. Eur J Biochem; 1993 May 15; 214(1):121-7. PubMed ID: 8508783 [Abstract] [Full Text] [Related]
18. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Hahn JS, Neef DW, Thiele DJ. Mol Microbiol; 2006 Apr 15; 60(1):240-51. PubMed ID: 16556235 [Abstract] [Full Text] [Related]