These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 20810906

  • 21. Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum.
    Bellamy TC, Ogden D.
    Glia; 2005 Dec; 52(4):325-35. PubMed ID: 16078233
    [Abstract] [Full Text] [Related]

  • 22. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction.
    Arbour D, Vande Velde C, Robitaille R.
    J Physiol; 2017 Feb 01; 595(3):647-661. PubMed ID: 27633977
    [Abstract] [Full Text] [Related]

  • 23. Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction.
    Robitaille R.
    J Neurosci; 1995 Nov 01; 15(11):7121-31. PubMed ID: 7472466
    [Abstract] [Full Text] [Related]

  • 24. The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes.
    San Martin A, Rela L, Gelb B, Pagani MR.
    J Neurosci; 2017 May 10; 37(19):4992-5007. PubMed ID: 28432141
    [Abstract] [Full Text] [Related]

  • 25. Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the SOD1G37R ALS Mouse Model.
    Martineau É, Arbour D, Vallée J, Robitaille R.
    J Neurosci; 2020 Sep 30; 40(40):7759-7777. PubMed ID: 32859714
    [Abstract] [Full Text] [Related]

  • 26. Glia-neuron intercommunications and synaptic plasticity.
    Vernadakis A.
    Prog Neurobiol; 1996 Jun 30; 49(3):185-214. PubMed ID: 8878303
    [Abstract] [Full Text] [Related]

  • 27. Age-dependent alterations of synaptic performance and plasticity in crustacean motor systems.
    Atwood HL.
    Exp Gerontol; 1992 Jun 30; 27(1):51-61. PubMed ID: 1499684
    [Abstract] [Full Text] [Related]

  • 28. Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function.
    Sugiura Y, Lin W.
    Biosci Rep; 2011 Oct 30; 31(5):295-302. PubMed ID: 21517783
    [Abstract] [Full Text] [Related]

  • 29. Activity-induced potentiation of developing neuromuscular synapses.
    Wan J, Poo M.
    Science; 1999 Sep 10; 285(5434):1725-8. PubMed ID: 10481007
    [Abstract] [Full Text] [Related]

  • 30. Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse.
    Castonguay A, Robitaille R.
    J Neurosci; 2001 Mar 15; 21(6):1911-22. PubMed ID: 11245676
    [Abstract] [Full Text] [Related]

  • 31. Glia: the many ways to modulate synaptic plasticity.
    Ben Achour S, Pascual O.
    Neurochem Int; 2010 Nov 15; 57(4):440-5. PubMed ID: 20193723
    [Abstract] [Full Text] [Related]

  • 32. Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo.
    Reddy LV, Koirala S, Sugiura Y, Herrera AA, Ko CP.
    Neuron; 2003 Oct 30; 40(3):563-80. PubMed ID: 14642280
    [Abstract] [Full Text] [Related]

  • 33. The role of glial cells in synaptic function.
    Bacci A, Verderio C, Pravettoni E, Matteoli M.
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb 28; 354(1381):403-9. PubMed ID: 10212490
    [Abstract] [Full Text] [Related]

  • 34. Nicotinic α7 receptor-induced adenosine release from perisynaptic Schwann cells controls acetylcholine spillover from motor endplates.
    Noronha-Matos JB, Oliveira L, Peixoto AR, Almeida L, Castellão-Santana LM, Ambiel CR, Alves-do Prado W, Correia-de-Sá P.
    J Neurochem; 2020 Aug 28; 154(3):263-283. PubMed ID: 32011735
    [Abstract] [Full Text] [Related]

  • 35. Roles of glial cells in the formation, function, and maintenance of the neuromuscular junction.
    Koirala S, Reddy LV, Ko CP.
    J Neurocytol; 2003 Aug 28; 32(5-8):987-1002. PubMed ID: 15034281
    [Abstract] [Full Text] [Related]

  • 36. Neuronal glia interactions at the vertebrate neuromuscular junction.
    Feng Z, Ko CP.
    Curr Opin Pharmacol; 2007 Jun 28; 7(3):316-24. PubMed ID: 17400025
    [Abstract] [Full Text] [Related]

  • 37. Muscarinic control of cytoskeleton in perisynaptic glia.
    Georgiou J, Robitaille R, Charlton MP.
    J Neurosci; 1999 May 15; 19(10):3836-46. PubMed ID: 10234016
    [Abstract] [Full Text] [Related]

  • 38. Developmental neuromuscular synapse elimination: Activity-dependence and potential downstream effector mechanisms.
    Lee YI.
    Neurosci Lett; 2020 Jan 23; 718():134724. PubMed ID: 31877335
    [Abstract] [Full Text] [Related]

  • 39. Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction.
    Bourque MJ, Robitaille R.
    J Physiol; 1998 Oct 01; 512 ( Pt 1)(Pt 1):197-209. PubMed ID: 9729629
    [Abstract] [Full Text] [Related]

  • 40. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ.
    Jahromi BS, Robitaille R, Charlton MP.
    Neuron; 1992 Jun 01; 8(6):1069-77. PubMed ID: 1351731
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.