These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


455 related items for PubMed ID: 20816013

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A novel transdermal delivery system for the anti-inflammatory lumiracoxib: influence of oleic acid on in vitro percutaneous absorption and in vivo potential cutaneous irritation.
    Moreira TS, de Sousa VP, Pierre MB.
    AAPS PharmSciTech; 2010 Jun; 11(2):621-9. PubMed ID: 20373151
    [Abstract] [Full Text] [Related]

  • 3. Development and characterisation of modified poloxamer 407 thermoresponsive depot systems containing cubosomes.
    Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S.
    Int J Pharm; 2011 Apr 15; 408(1-2):20-6. PubMed ID: 21272624
    [Abstract] [Full Text] [Related]

  • 4. Enhanced transdermal delivery of ketoprofen from bioadhesive gels.
    Singh S, Gajra B, Rawat M, Muthu MS.
    Pak J Pharm Sci; 2009 Apr 15; 22(2):193-8. PubMed ID: 19339232
    [Abstract] [Full Text] [Related]

  • 5. [Characteristics of poloxamer thermosensitive in situ gel of dexamethasone sodium phosphate].
    Li XY, Zhu ZJ, Cheng AY.
    Yao Xue Xue Bao; 2008 Feb 15; 43(2):208-13. PubMed ID: 18507351
    [Abstract] [Full Text] [Related]

  • 6. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels.
    Ricci EJ, Bentley MV, Farah M, Bretas RE, Marchetti JM.
    Eur J Pharm Sci; 2002 Nov 15; 17(3):161-7. PubMed ID: 12393144
    [Abstract] [Full Text] [Related]

  • 7. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels.
    Mansour M, Mansour S, Mortada ND, Abd Elhady SS.
    Drug Dev Ind Pharm; 2008 Jul 15; 34(7):744-52. PubMed ID: 18612913
    [Abstract] [Full Text] [Related]

  • 8. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies.
    M A Fathalla Z, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, Alany RG.
    Eur J Pharm Biopharm; 2017 May 15; 114():119-134. PubMed ID: 28126392
    [Abstract] [Full Text] [Related]

  • 9. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.
    Kojarunchitt T, Baldursdottir S, Dong YD, Boyd BJ, Rades T, Hook S.
    Eur J Pharm Biopharm; 2015 Jan 15; 89():74-81. PubMed ID: 25481034
    [Abstract] [Full Text] [Related]

  • 10. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V, Gupta S, Saini V.
    Drug Deliv; 2016 Nov 15; 23(9):3573-3581. PubMed ID: 27494650
    [Abstract] [Full Text] [Related]

  • 11. Characterization of gelation process and drug release profile of thermosensitive liquid lecithin/poloxamer 407 based gels as carriers for percutaneous delivery of ibuprofen.
    Djekic L, Krajisnik D, Martinovic M, Djordjevic D, Primorac M.
    Int J Pharm; 2015 Jul 25; 490(1-2):180-9. PubMed ID: 26002567
    [Abstract] [Full Text] [Related]

  • 12. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity.
    Querobino SM, de Faria NC, Vigato AA, da Silva BGM, Machado IP, Costa MS, Costa FN, de Araujo DR, Alberto-Silva C.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun 25; 99():1350-1361. PubMed ID: 30889669
    [Abstract] [Full Text] [Related]

  • 13. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties.
    Liu Y, Zhu YY, Wei G, Lu WY.
    Eur J Pharm Sci; 2009 Jun 28; 37(3-4):306-12. PubMed ID: 19491020
    [Abstract] [Full Text] [Related]

  • 14. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.
    Boddu SH, Bonam SP, Wei Y, Alexander K.
    Int J Pharm Compd; 2014 Jun 28; 18(3):256-61. PubMed ID: 25306775
    [Abstract] [Full Text] [Related]

  • 15. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy.
    Gandra SC, Nguyen S, Nazzal S, Alayoubi A, Jung R, Nesamony J.
    Pharm Dev Technol; 2015 Jan 28; 20(1):41-9. PubMed ID: 24160864
    [Abstract] [Full Text] [Related]

  • 16. Influence of lecithin on some physical chemical properties of poloxamer gels: rheological, microscopic and in vitro permeation studies.
    Bentley MV, Marchetti JM, Ricardo N, Ali-Abi Z, Collett JH.
    Int J Pharm; 1999 Dec 20; 193(1):49-55. PubMed ID: 10581421
    [Abstract] [Full Text] [Related]

  • 17. Preparation, rheological study, and characterization of an organogel as a system for transdermal release of active principles.
    Ruiz MA, Clares B, Morales ME, Gallardo V.
    Pharm Dev Technol; 2007 Dec 20; 12(6):637-44. PubMed ID: 18161637
    [Abstract] [Full Text] [Related]

  • 18. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels.
    Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S.
    Int J Pharm; 2011 Jun 15; 411(1-2):128-35. PubMed ID: 21459137
    [Abstract] [Full Text] [Related]

  • 19. Temperature-responsive, Pluronic-g-poly(acrylic acid) copolymers in situ gels for ophthalmic drug delivery: rheology, in vitro drug release, and in vivo resident property.
    Ma WD, Xu H, Nie SF, Pan WS.
    Drug Dev Ind Pharm; 2008 Mar 15; 34(3):258-66. PubMed ID: 18363141
    [Abstract] [Full Text] [Related]

  • 20. Development and characterization of a ricinoleic acid poloxamer gel system for transdermal eyelid delivery.
    Boddu SH, Bonam SP, Jung R.
    Drug Dev Ind Pharm; 2015 Apr 15; 41(4):605-12. PubMed ID: 24517574
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.