These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 20817081

  • 1. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.
    Başkent D, Chatterjee M.
    Hear Res; 2010 Dec 01; 270(1-2):127-33. PubMed ID: 20817081
    [Abstract] [Full Text] [Related]

  • 2. Multimodal and Spectral Degradation Effects on Speech and Emotion Recognition in Adult Listeners.
    Ritter C, Vongpaisal T.
    Trends Hear; 2018 Dec 01; 22():2331216518804966. PubMed ID: 30378469
    [Abstract] [Full Text] [Related]

  • 3. Top-Down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech.
    Oh SH, Donaldson GS, Kong YY.
    Ear Hear; 2016 Dec 01; 37(5):582-92. PubMed ID: 27007220
    [Abstract] [Full Text] [Related]

  • 4. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentences.
    Stilp CE, Goupell MJ.
    J Acoust Soc Am; 2015 Feb 01; 137(2):844-55. PubMed ID: 25698018
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The role of continuous low-frequency harmonicity cues for interrupted speech perception in bimodal hearing.
    Oh SH, Donaldson GS, Kong YY.
    J Acoust Soc Am; 2016 Apr 01; 139(4):1747. PubMed ID: 27106322
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The effect of visual cues on top-down restoration of temporally interrupted speech, with and without further degradations.
    Benard MR, Başkent D.
    Hear Res; 2015 Oct 01; 328():24-33. PubMed ID: 26117407
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Perceptual learning of temporally interrupted spectrally degraded speech.
    Benard MR, Başkent D.
    J Acoust Soc Am; 2014 Sep 01; 136(3):1344. PubMed ID: 25190407
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech.
    Qin MK, Oxenham AJ.
    J Acoust Soc Am; 2006 Apr 01; 119(4):2417-26. PubMed ID: 16642854
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers.
    Qin MK, Oxenham AJ.
    J Acoust Soc Am; 2003 Jul 01; 114(1):446-54. PubMed ID: 12880055
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Low-frequency fine-structure cues allow for the online use of lexical stress during spoken-word recognition in spectrally degraded speech.
    Kong YY, Jesse A.
    J Acoust Soc Am; 2017 Jan 01; 141(1):373. PubMed ID: 28147573
    [Abstract] [Full Text] [Related]

  • 18. Effect of speech degradation on top-down repair: phonemic restoration with simulations of cochlear implants and combined electric-acoustic stimulation.
    Başkent D.
    J Assoc Res Otolaryngol; 2012 Oct 01; 13(5):683-92. PubMed ID: 22569838
    [Abstract] [Full Text] [Related]

  • 19. Information-bearing acoustic change outperforms duration in predicting intelligibility of full-spectrum and noise-vocoded sentences.
    Stilp CE.
    J Acoust Soc Am; 2014 Mar 01; 135(3):1518-29. PubMed ID: 24606287
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.